Python Hidden Markov model implementation
logilab-hmm is an implementation of Hidden Markov model and associated algorithms (Viterbi and Baum-Welsh).
logilab-hmm is an implementation of Hidden Markov model and associated algorithms (Viterbi and Baum-Welsh).
Version: 0.5.0
License: GPL-2+
GitHub
Maintainers |
No Maintainer
|
Categories |
python
|
Homepage |
http://www.logilab.org/project/logilab-hmm
|
Platforms |
darwin
|
Variants |
-
clang10
(Build using the MacPorts clang 10 compiler)
-
clang11
(Build using the MacPorts clang 11 compiler)
-
clang12
(Build using the MacPorts clang 12 compiler)
-
clang50
(Build using the MacPorts clang 5.0 compiler)
-
clang60
(Build using the MacPorts clang 6.0 compiler)
-
clang70
(Build using the MacPorts clang 7.0 compiler)
-
clang80
(Build using the MacPorts clang 8.0 compiler)
-
clang90
(Build using the MacPorts clang 9.0 compiler)
-
clangdevel
(Build using the MacPorts clang devel compiler)
-
g95
(Build using the g95 Fortran compiler)
-
gcc10
(Build using the MacPorts gcc 10 compiler)
-
gcc11
(Build using the MacPorts gcc 11 compiler)
-
gcc5
(Build using the MacPorts gcc 5 compiler)
-
gcc6
(Build using the MacPorts gcc 6 compiler)
-
gcc7
(Build using the MacPorts gcc 7 compiler)
-
gcc8
(Build using the MacPorts gcc 8 compiler)
-
gcc9
(Build using the MacPorts gcc 9 compiler)
-
gccdevel
(Build using the MacPorts gcc devel compiler)
-
gfortran
(Build using the MacPorts gcc 11 Fortran compiler)
|
Subport(s) (1)
"py27-logilab-hmm" depends on
lib (4)
build (2)
Ports that depend on "py27-logilab-hmm"
lib (1)
Port Health:
Loading Port Health
Installations (30 days)
0
Requested Installations (30 days)
0