R-bayest (R/R-bayest) Updated: 9 months, 2 weeks ago Add to my watchlist

Effect size targeted Bayesian two-sample t-tests via Markov chain Monte Carlo in Gaussian mixture models

Provides an Markov-Chain-Monte-Carlo algorithm for Bayesian t-tests on the effect size. The underlying Gibbs sampler is based on a two-component Gaussian mixture and approximates the posterior distributions of the effect size, the difference of means and difference of standard deviations. A posterior analysis of the effect size via the region of practical equivalence is provided as well.

Version: 1.5 License: GPL-3 GitHub
Reset

47 build(s) found
Builder Build Number Start Time Elapsed Time Watcher Build Status
11 157337 2024-05-23 4:47:38 0:00:43 46940 build successful
10.12 275732 2024-05-23 4:41:12 0:00:36 85223 build successful
13.arm64 62726 2024-05-23 4:36:02 0:00:12 21401 build successful
11 156058 2024-05-08 22:42:13 0:00:50 46377 build successful
10.13 233659 2024-05-06 19:54:43 0:00:40 76631 build successful
10.8 177864 2024-05-06 8:54:46 0:00:32 56165 build successful
10.12 273348 2024-05-05 8:48:47 0:01:11 84515 build successful
13.arm64 60454 2024-05-04 11:12:51 0:00:11 20663 build successful
10.15 183142 2024-05-02 23:19:45 0:00:52 56196 build successful
10.14 206232 2024-05-02 13:55:11 0:00:52 67177 build successful
10.10 269017 2024-05-02 8:42:06 0:00:34 85552 build successful
10.9 275190 2024-05-01 16:07:17 0:00:40 85157 build successful
10.11 262213 2024-05-01 4:41:00 0:10:58 85548 build successful
10.6.x86_64 200626 2024-05-01 1:28:00 0:00:40 58146 build successful
12.arm64 124582 2024-04-29 16:16:39 0:00:10 34770 build successful
10.7 187489 2024-04-29 10:10:57 0:00:32 57794 build successful
14.arm64 26333 2024-04-27 17:40:10 0:00:18 8485 build successful
10.14 201426 2024-04-06 16:52:16 0:00:35 66060 build successful
10.13 226755 2024-04-06 16:02:13 0:00:32 75309 build successful
10.8 170613 2024-04-06 12:19:47 0:00:35 54835 build successful
10.7 183266 2024-04-06 10:59:49 0:00:36 56774 build successful
10.10 262503 2024-04-06 9:20:25 0:00:37 84358 build successful
12.arm64 122301 2024-04-06 3:23:46 0:00:09 33779 build successful
14 34274 2024-04-06 1:18:45 0:00:48 7850 build successful
10.15 177790 2024-04-05 23:43:28 0:00:51 55053 build successful
10.11 257399 2024-04-05 22:04:53 0:00:37 84468 build successful
10.9 269638 2024-04-05 19:35:29 0:00:36 84042 build successful
11 148643 2024-04-05 18:08:56 0:00:54 44981 build successful
10.12 266787 2024-04-05 17:59:23 0:00:41 83252 build successful
10.6 159741 2024-04-05 17:30:08 0:00:36 56999 build successful
13.arm64 54731 2024-04-05 17:29:53 0:00:13 19409 build successful
10.6.x86_64 195466 2024-04-05 17:29:44 0:00:45 57046 build successful
14 25273 2024-01-09 12:02:10 0:01:07 4187 build successful
12.arm64 106006 2023-09-12 5:52:34 0:00:10 25874 build successful
11 127095 2023-09-12 3:57:42 0:00:45 37072 build successful
10.15 155446 2023-09-12 2:52:14 0:00:43 47151 build successful
10.14 179844 2023-09-12 2:44:43 0:00:33 58164 build successful
13 49061 2023-09-12 0:16:09 0:00:32 11622 build successful
10.11 235385 2023-09-12 0:03:05 0:00:40 76560 build successful
10.13 204797 2023-09-11 23:58:37 0:00:42 67406 build successful
10.8 148084 2023-09-11 23:57:17 0:00:38 46930 build successful
10.6 135681 2023-09-11 23:56:18 0:00:34 49089 build successful
10.12 244004 2023-09-11 23:54:36 0:00:39 75354 build successful
10.6.x86_64 171019 2023-09-11 23:53:36 0:00:39 49131 build successful
10.9 245771 2023-09-11 23:52:38 0:00:35 76140 build successful
10.10 239184 2023-09-11 23:52:36 0:00:42 76449 build successful
10.7 159721 2023-09-11 23:46:12 0:04:15 48869 build successful