HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"count": 50615,
"next": "https://ports.macports.org/api/v1/ports/?format=api&ordering=name&page=854",
"previous": "https://ports.macports.org/api/v1/ports/?format=api&ordering=name&page=852",
"results": [
{
"name": "rb-aspectr",
"portdir": "ruby/rb-aspectr",
"version": "0.3.5",
"license": "GPL-2",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://sourceforge.net/projects/aspectr",
"description": "Simple aspect-oriented programming in Ruby",
"long_description": "Aspect-oriented programming concepts to Ruby. Essentially it allows you to wrap code around existing methods in your classes. This can be a good thing (and even affect how you design your code) since it separates different concerns into different parts of the code. It is somewhat similar to Aspect",
"active": true,
"categories": [
"devel",
"ruby"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16"
]
},
{
"type": "lib",
"ports": [
"ruby"
]
}
],
"depends_on": []
},
{
"name": "R-BASS",
"portdir": "R/R-BASS",
"version": "1.3.1",
"license": "GPL-3",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BASS",
"description": "Bayesian Adaptive Spline Surfaces",
"long_description": "Bayesian Adaptive Spline Surfaces",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended",
"R-truncdist",
"R-hypergeo"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-testthat",
"R-R.rsp"
]
}
],
"depends_on": []
},
{
"name": "rb-ast",
"portdir": "ruby/rb-ast",
"version": "2.4.2",
"license": "MIT",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://whitequark.github.io/ast",
"description": "Library for working with Abstract Syntax Trees",
"long_description": "Library for working with Abstract Syntax Trees",
"active": true,
"categories": [
"devel",
"ruby"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16"
]
}
],
"depends_on": []
},
{
"name": "R-BatchJobs",
"portdir": "R/R-BatchJobs",
"version": "1.9",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BatchJobs",
"description": "Batch computing with R",
"long_description": "Batch computing with R",
"active": true,
"categories": [
"science",
"parallel",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-stringi",
"R-DBI",
"R-digest",
"R-checkmate",
"R-brew",
"R-BBmisc",
"R-RSQLite",
"R-sendmailR",
"R-CRAN-recommended",
"R-backports",
"R-data.table"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-testthat"
]
}
],
"depends_on": [
{
"type": "test",
"ports": [
"R-parallelMap"
]
}
]
},
{
"name": "R-batchmeans",
"portdir": "R/R-batchmeans",
"version": "1.0-4",
"license": "(GPL-2 or GPL-3)",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=batchmeans",
"description": "Consistent batch means estimation of Monte Carlo standard errors",
"long_description": "Consistent batch means estimation of Monte Carlo standard errors",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-BayesRGMM",
"R-LTFHPlus"
]
}
]
},
{
"name": "R-batchtools",
"portdir": "R/R-batchtools",
"version": "0.9.17",
"license": "LGPL-3",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://markfairbanks.github.io/tidytable",
"description": "Tools for computation on batch systems",
"long_description": "Tools for computation on batch systems",
"active": true,
"categories": [
"science",
"parallel",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-data.table",
"R-fs",
"R-stringi",
"R-base64url",
"R-digest",
"R-withr",
"R-checkmate",
"R-progress",
"R-brew",
"R-rappdirs",
"R-CRAN-recommended",
"R-R6",
"R-backports"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-e1071",
"R-tibble",
"R-knitr",
"R-testthat",
"R-future",
"R-rmarkdown",
"R-debugme",
"R-parallelMap",
"R-doParallel",
"R-foreach",
"R-snow",
"R-ranger",
"R-doMPI",
"R-future.batchtools"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-future.batchtools"
]
},
{
"type": "test",
"ports": [
"R-BiocParallel",
"R-parallelMap",
"R-systemPipeR"
]
}
]
},
{
"name": "rb-atk",
"portdir": "ruby/rb-atk",
"version": "4.2.4",
"license": "LGPL-2.1+",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://ruby-gnome2.osdn.jp",
"description": "Ruby/ATK is a Ruby binding of ATK-1.0.x",
"long_description": "Ruby/ATK is a Ruby binding of ATK-1.0.x",
"active": true,
"categories": [
"devel",
"gnome",
"ruby"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-17"
]
}
],
"depends_on": []
},
{
"name": "rb-audiofile",
"portdir": "ruby/rb-audiofile",
"version": "0.2.4",
"license": "unknown",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "http://ruby-audiofile.sourceforge.net/",
"description": "A binding to the audofile library",
"long_description": "Reads and writes audio (wav, au, aiff, NeXT snd, etc but not ogg or mp3) and can divine information such as length, sample rate, etc.",
"active": true,
"categories": [
"audio",
"ruby"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"clang-9.0"
]
},
{
"type": "lib",
"ports": [
"audiofile",
"ruby"
]
}
],
"depends_on": []
},
{
"name": "R-baycn",
"portdir": "R/R-baycn",
"version": "1.2.0",
"license": "GPL-3",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=baycn",
"description": "Bayesian inference for causal networks",
"long_description": "Bayesian inference for causal networks",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-igraph",
"R-egg",
"R-CRAN-recommended",
"R-gtools",
"R-ggplot2"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-testthat"
]
}
],
"depends_on": []
},
{
"name": "R-bayefdr",
"portdir": "R/R-bayefdr",
"version": "0.2.1",
"license": "GPL-3",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=bayefdr",
"description": "Bayesian estimation and optimisation of expected FDR and expected FNR",
"long_description": "Bayesian estimation and optimisation of expected FDR and expected FNR",
"active": true,
"categories": [
"science",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-ggplot2",
"R-ggExtra",
"R-cowplot",
"R-CRAN-recommended",
"R-assertthat",
"R-reshape2"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-testthat",
"R-pkgdown"
]
}
],
"depends_on": []
},
{
"name": "R-bayes4psy",
"portdir": "R/R-bayes4psy",
"version": "1.2.12",
"license": "GPL-3+",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/bstatcomp/bayes4psy",
"description": "User-friendly Bayesian data analysis for psychology",
"long_description": "User-friendly Bayesian data analysis for psychology",
"active": true,
"categories": [
"science",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-RcppEigen",
"R-RcppParallel",
"R-StanHeaders",
"R-rstantools",
"R-reshape",
"R-dplyr",
"R-ggplot2",
"R-rstan",
"R-cowplot",
"R-mcmcse",
"R-circular",
"R-emg",
"R-metRology",
"R-CRAN-recommended",
"R-BH",
"R-Rcpp"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-testthat",
"R-rmarkdown"
]
}
],
"depends_on": []
},
{
"name": "R-bayesAB",
"portdir": "R/R-bayesAB",
"version": "1.1.3",
"license": "MIT",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/FrankPortman/bayesAB",
"description": "Fast Bayesian methods for A/B testing",
"long_description": "Fast Bayesian methods for A/B testing",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-ggplot2",
"R-CRAN-recommended",
"R-Rcpp",
"R-rlang"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-magrittr",
"R-knitr",
"R-testthat",
"R-rmarkdown",
"R-plumber"
]
}
],
"depends_on": []
},
{
"name": "R-bayesammi",
"portdir": "R/R-bayesammi",
"version": "0.3.0",
"license": "GPL-2",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=bayesammi",
"description": "Bayesian estimation of the Additive Main effects and Multiplicative Interaction model",
"long_description": "Bayesian estimation of the Additive Main effects and Multiplicative Interaction model",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-mvtnorm",
"R-tibble",
"R-dplyr",
"R-purrr",
"R-tidyr",
"R-ggplot2",
"R-scales",
"R-magrittr",
"R-ggrepel",
"R-tmvtnorm",
"R-rstiefel",
"R-ks",
"R-CRAN-recommended",
"R-lme4",
"R-rlang"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-bayesanova",
"portdir": "R/R-bayesanova",
"version": "1.6",
"license": "GPL-2",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=bayesanova",
"description": "Bayesian inference in the Analysis of Variance via Markov Chain Monte Carlo in gaussian mixture models",
"long_description": "Bayesian inference in the Analysis of Variance via Markov Chain Monte Carlo in gaussian mixture models",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-MCMCpack",
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-coda"
]
}
],
"depends_on": []
},
{
"name": "R-BayesBinMix",
"portdir": "R/R-BayesBinMix",
"version": "1.4.1",
"license": "GPL-2",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BayesBinMix",
"description": "Bayesian estimation of mixtures of multivariate Bernoulli distributions",
"long_description": "Bayesian estimation of mixtures of multivariate Bernoulli distributions",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-foreach",
"R-label.switching",
"R-coda",
"R-CRAN-recommended",
"R-doParallel"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-BayesBP",
"portdir": "R/R-BayesBP",
"version": "1.1",
"license": "GPL-2+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BayesBP",
"description": "Bayesian estimation using Bernstein polynomial fits rate matrix",
"long_description": "Bayesian estimation using Bernstein polynomial fits rate matrix",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-openxlsx",
"R-CRAN-recommended",
"R-iterators"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-testthat"
]
}
],
"depends_on": []
},
{
"name": "R-bayesbr",
"portdir": "R/R-bayesbr",
"version": "0.0.1.0",
"license": "GPL-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pjoao266/bayesbr",
"description": "Bayesian Beta regression in R",
"long_description": "Bayesian Beta regression in R",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-RcppEigen",
"R-RcppParallel",
"R-StanHeaders",
"R-magrittr",
"R-coda",
"R-rstantools",
"R-stringr",
"R-dplyr",
"R-loo",
"R-tidyr",
"R-ggplot2",
"R-rstan",
"R-Formula",
"R-fdrtool",
"R-CRAN-recommended",
"R-BH",
"R-Rcpp"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-shiny",
"R-shinyjs",
"R-DT",
"R-rmarkdown",
"R-tidyverse",
"R-openxlsx",
"R-highcharter",
"R-shinydashboard",
"R-dashboardthemes",
"R-shinyalert"
]
}
],
"depends_on": []
},
{
"name": "R-bayescopulareg",
"portdir": "R/R-bayescopulareg",
"version": "0.1.3",
"license": "(GPL-2 or GPL-3)",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=bayescopulareg",
"description": "Bayesian copula regression",
"long_description": "Bayesian copula regression",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [
"clang10",
"clang11",
"clang12",
"clang13",
"clang14",
"clang15",
"clang16",
"clang50",
"clang60",
"clang70",
"clang80",
"clang90",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gccdevel",
"gfortran"
],
"dependencies": [
{
"type": "build",
"ports": [
"gcc13",
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-RcppDist",
"R-mvtnorm",
"libgcc",
"R-CRAN-recommended",
"R-Rcpp",
"R-RcppArmadillo"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-bayescount",
"portdir": "R/R-bayescount",
"version": "0.9.99-9",
"license": "GPL-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://bayescount.sourceforge.net",
"description": "Power calculations and Bayesian analysis of count distributions and FECRT Data using MCMC",
"long_description": "Power calculations and Bayesian analysis of count distributions and FECRT Data using MCMC",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-runjags",
"R-rjags",
"jags",
"R-CRAN-recommended",
"R-coda"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-BayesDA",
"portdir": "R/R-BayesDA",
"version": "2012.04-1",
"license": "GPL-2",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BayesDA",
"description": "Functions and datasets for Bayesian Data Analysis (2nd ed.)",
"long_description": "Functions and datasets for Bayesian Data Analysis (2nd ed.)",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-MCMCpack"
]
}
],
"depends_on": []
},
{
"name": "R-bayesDccGarch",
"portdir": "R/R-bayesDccGarch",
"version": "3.0.4",
"license": "(GPL-2 or GPL-3)",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=bayesDccGarch",
"description": "Methods and tools for Bayesian analysis of DCC-GARCH(1,1) model",
"long_description": "Bayesian estimation of dynamic conditional correlation GARCH model for multivariate time series volatility.",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-coda",
"R-numDeriv",
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-BayesDesign",
"portdir": "R/R-BayesDesign",
"version": "0.1.1",
"license": "GPL-2",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BayesDesign",
"description": "Bayesian single-arm design with survival endpoints",
"long_description": "Bayesian single-arm design with survival endpoints",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-bayesdfa",
"portdir": "R/R-bayesdfa",
"version": "1.3.3",
"license": "GPL-3",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://fate-ewi.github.io/bayesdfa",
"description": "Bayesian Dynamic Factor Analysis (DFA) with Stan",
"long_description": "Implements Bayesian dynamic factor analysis with Stan. Dynamic factor analysis is a dimension reduction tool for multivariate time series.",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-RcppEigen",
"R-RcppParallel",
"R-StanHeaders",
"R-rlang",
"R-rstantools",
"R-dplyr",
"R-loo",
"R-reshape2",
"R-ggplot2",
"R-rstan",
"R-viridisLite",
"R-CRAN-recommended",
"R-BH",
"R-Rcpp"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-testthat",
"R-rmarkdown"
]
}
],
"depends_on": []
},
{
"name": "R-BayesESS",
"portdir": "R/R-BayesESS",
"version": "0.1.19",
"license": "(GPL-2 or GPL-3)",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BayesESS",
"description": "Determines effective sample size of a parametric prior distribution in Bayesian models",
"long_description": "Determines effective sample size of a parametric prior distribution in Bayesian models",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-RcppEigen",
"R-MatrixModels",
"R-MCMCpack",
"R-LaplacesDemon",
"R-dfcrm",
"R-CRAN-recommended",
"R-Rcpp",
"R-RcppArmadillo"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-rmarkdown"
]
}
],
"depends_on": []
},
{
"name": "R-BayesFactor",
"portdir": "R/R-BayesFactor",
"version": "0.9.12-4.7",
"license": "GPL-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://richarddmorey.github.io/BayesFactor",
"description": "Computation of Bayes factors for common designs",
"long_description": "Computation of Bayes factors for common designs",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-coda",
"R-mvtnorm",
"R-stringr",
"R-pbapply",
"R-MatrixModels",
"R-hypergeo",
"R-CRAN-recommended",
"R-Rcpp",
"R-RcppEigen"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-xtable",
"R-knitr",
"R-testthat",
"R-lme4",
"R-markdown",
"R-arm",
"R-doMC",
"R-foreach",
"R-languageR"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-statsExpressions",
"R-jmv",
"R-yarrr"
]
},
{
"type": "test",
"ports": [
"R-report",
"R-bayestestR",
"R-bruceR",
"R-performance",
"R-BayesTools",
"R-correlation",
"R-tidystats",
"R-effectsize",
"R-insight",
"R-papaja"
]
}
]
},
{
"name": "R-bayesforecast",
"portdir": "R/R-bayesforecast",
"version": "1.0.1",
"license": "GPL-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=bayesforecast",
"description": "Bayesian time series modeling with Stan",
"long_description": "Bayesian time series modeling with Stan",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-RcppEigen",
"R-RcppParallel",
"R-StanHeaders",
"R-astsa",
"R-rstantools",
"R-zoo",
"R-loo",
"R-ggplot2",
"R-BH",
"R-lubridate",
"R-rstan",
"R-bayesplot",
"R-bridgesampling",
"R-forecast",
"R-prophet",
"R-CRAN-recommended",
"R-gridExtra",
"R-Rcpp"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-bayesGAM",
"portdir": "R/R-bayesGAM",
"version": "0.0.2",
"license": "GPL-3",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=bayesGAM",
"description": "Multivariate response generalized additive models using Hamiltonian Monte Carlo",
"long_description": "Multivariate response generalized additive models using Hamiltonian Monte Carlo",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-RcppEigen",
"R-RcppParallel",
"R-StanHeaders",
"R-rstantools",
"R-loo",
"R-ggplot2",
"R-gridExtra",
"R-rstan",
"R-bayesplot",
"R-geometry",
"R-mlbench",
"R-corrplot",
"R-SemiPar",
"R-CRAN-recommended",
"R-BH",
"R-Rcpp"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-testthat"
]
}
],
"depends_on": []
},
{
"name": "R-bayesGARCH",
"portdir": "R/R-bayesGARCH",
"version": "2.1.10",
"license": "GPL-2+",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/ArdiaD/bayesGARCH",
"description": "Bayesian estimation of the GARCH(1,1) model with Student-t innovations",
"long_description": "Bayesian estimation of the GARCH(1,1) model with Student-t innovations",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-coda",
"R-mvtnorm",
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": [
{
"type": "test",
"ports": [
"R-miscFuncs"
]
}
]
},
{
"name": "R-BayesGOF",
"portdir": "R/R-BayesGOF",
"version": "5.2",
"license": "GPL-2",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BayesGOF",
"description": "Bayesian modeling via frequentist goodness-of-fit",
"long_description": "Bayesian modeling via frequentist goodness-of-fit",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-rmarkdown",
"R-orthopolynom",
"R-Bolstad2",
"R-knitr",
"R-CRAN-recommended",
"R-VGAM",
"R-nleqslv"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-bayesian",
"portdir": "R/R-bayesian",
"version": "1.0.1",
"license": "MIT",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://hsbadr.github.io/bayesian",
"description": "Bindings for Bayesian TidyModels",
"long_description": "Bindings for Bayesian TidyModels",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-brms",
"R-parsnip",
"R-CRAN-recommended",
"R-dplyr",
"R-purrr",
"R-rlang",
"R-tibble"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-recipes",
"R-workflows",
"R-knitr",
"R-rstan",
"R-testthat",
"R-future",
"R-rmarkdown",
"R-devtools",
"R-roxygen2",
"R-covr",
"R-spelling"
]
}
],
"depends_on": []
},
{
"name": "R-BayesianNetwork",
"portdir": "R/R-BayesianNetwork",
"version": "0.3.2",
"license": "Apache",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://paulgovan.github.io/BayesianNetwork",
"description": "Bayesian network modelling and analysis",
"long_description": "Bayesian network modelling and analysis",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-plotly",
"R-rintrojs",
"R-bnlearn",
"R-heatmaply",
"R-networkD3",
"R-shinyAce",
"R-shinyWidgets",
"R-CRAN-recommended",
"R-shiny",
"R-shinydashboard"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-rmarkdown"
]
}
],
"depends_on": []
},
{
"name": "R-BayesianTools",
"portdir": "R/R-BayesianTools",
"version": "0.1.8",
"license": "GPL-3",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/florianhartig/BayesianTools",
"description": "General-purpose MCMC and SMC samplers and tools for Bayesian statistics",
"long_description": "General-purpose MCMC and SMC samplers and tools for Bayesian statistics",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-mvtnorm",
"R-numDeriv",
"R-bridgesampling",
"R-tmvtnorm",
"R-emulator",
"R-ellipse",
"R-msm",
"R-DHARMa",
"R-IDPmisc",
"R-gap",
"R-CRAN-recommended",
"R-Rcpp",
"R-coda"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-testthat",
"R-rmarkdown",
"R-roxygen2",
"R-lhs",
"R-DEoptim",
"R-sensitivity"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-DPTM"
]
},
{
"type": "test",
"ports": [
"R-DHARMa"
]
}
]
},
{
"name": "R-Bayesiantreg",
"portdir": "R/R-Bayesiantreg",
"version": "1.0.1",
"license": "GPL-2+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=Bayesiantreg",
"description": "Bayesian t regression for modelling mean and scale parameters",
"long_description": "Bayesian t regression for modelling mean and scale parameters",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-mvtnorm",
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-bayesianVARs",
"portdir": "R/R-bayesianVARs",
"version": "0.1.5",
"license": "GPL-3+",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://luisgruber.github.io/bayesianVARs",
"description": "MCMC estimation of Bayesian vector autoregressions",
"long_description": "MCMC estimation of Bayesian vector autoregressions",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [
"clang10",
"clang11",
"clang12",
"clang13",
"clang14",
"clang15",
"clang16",
"clang50",
"clang60",
"clang70",
"clang80",
"clang90",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gccdevel",
"gfortran"
],
"dependencies": [
{
"type": "build",
"ports": [
"gcc13",
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-RcppProgress",
"R-colorspace",
"R-mvtnorm",
"R-scales",
"R-GIGrvg",
"R-stochvol",
"R-factorstochvol",
"libgcc13",
"R-CRAN-recommended",
"libgcc",
"R-Rcpp",
"R-RcppArmadillo"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-coda",
"R-knitr",
"R-testthat",
"R-rmarkdown"
]
}
],
"depends_on": []
},
{
"name": "R-BayesKnockdown",
"portdir": "R/R-BayesKnockdown",
"version": "1.30.0",
"license": "GPL-3",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://bioconductor.org/packages/BayesKnockdown",
"description": "Posterior probabilities for edges from knockdown data",
"long_description": "Posterior probabilities for edges from knockdown data",
"active": true,
"categories": [
"science",
"R",
"bioconductor"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-Biobase",
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-bayeslincom",
"portdir": "R/R-bayeslincom",
"version": "1.3.0",
"license": "GPL-2",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=bayeslincom",
"description": "Linear combinations of Bayesian posterior samples",
"long_description": "Linear combinations of Bayesian posterior samples",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-ggplot2",
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-BGGM",
"R-testthat"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-BBcor"
]
}
]
},
{
"name": "R-BayesLN",
"portdir": "R/R-BayesLN",
"version": "0.2.10",
"license": "GPL-3",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BayesLN",
"description": "Bayesian inference for log-normal data",
"long_description": "Bayesian inference for log-normal data",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [
"clang10",
"clang11",
"clang12",
"clang13",
"clang14",
"clang15",
"clang16",
"clang50",
"clang60",
"clang70",
"clang80",
"clang90",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gccdevel",
"gfortran"
],
"dependencies": [
{
"type": "build",
"ports": [
"gcc13",
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-data.table",
"R-gsl",
"R-coda",
"R-lme4",
"R-optimx",
"R-GeneralizedHyperbolic",
"R-CRAN-recommended",
"libgcc",
"R-Rcpp",
"R-RcppEigen"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-rmarkdown"
]
}
],
"depends_on": []
},
{
"name": "R-BayesLogit",
"portdir": "R/R-BayesLogit",
"version": "2.1",
"license": "GPL-3+",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BayesLogit",
"description": "PolyaGamma sampling",
"long_description": "Tools for sampling from the PolyaGamma distribution. Useful for logistic regression.",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-bdlim"
]
},
{
"type": "test",
"ports": [
"R-mcmcsae"
]
}
]
},
{
"name": "R-bayesm",
"portdir": "R/R-bayesm",
"version": "3.1-6",
"license": "GPL-2+",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=bayesm",
"description": "Bayesian inference for marketing and micro-econometrics",
"long_description": "Bayesian inference for marketing and micro-econometrics",
"active": true,
"categories": [
"science",
"R",
"economics"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [
"clang10",
"clang11",
"clang12",
"clang13",
"clang14",
"clang15",
"clang16",
"clang50",
"clang60",
"clang70",
"clang80",
"clang90",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gccdevel",
"gfortran"
],
"dependencies": [
{
"type": "build",
"ports": [
"gcc13",
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended",
"libgcc",
"R-Rcpp",
"R-RcppArmadillo"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-rmarkdown"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-mvProbit",
"R-compositions",
"R-telescope",
"R-BGVAR"
]
},
{
"type": "test",
"ports": [
"R-rrMixture",
"R-MCMCglmm",
"R-echoice2",
"R-idefix"
]
}
]
},
{
"name": "R-BayesMallows",
"portdir": "R/R-BayesMallows",
"version": "2.2.2",
"license": "GPL-3",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://ocbe-uio.github.io/BayesMallows",
"description": "Bayesian preference learning with the Mallows rank model",
"long_description": "An implementation of the Bayesian version of the Mallows rank model.",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [
"clang11",
"clang12",
"clang13",
"clang14",
"clang15",
"clang16",
"clang10",
"clang50",
"clang60",
"clang70",
"clang80",
"clang90",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gccdevel",
"gfortran"
],
"dependencies": [
{
"type": "build",
"ports": [
"gcc13",
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-rlang",
"R-ggplot2",
"R-testthat",
"R-igraph",
"R-Rdpack",
"R-sets",
"R-relations",
"libgcc13",
"R-CRAN-recommended",
"libgcc",
"R-Rcpp",
"R-RcppArmadillo"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-rmarkdown",
"R-covr",
"R-label.switching"
]
}
],
"depends_on": [
{
"type": "test",
"ports": [
"R-PlackettLuce"
]
}
]
},
{
"name": "R-bayesMeanScale",
"portdir": "R/R-bayesMeanScale",
"version": "0.1.4",
"license": "GPL-3+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/dalenbe2/bayesMeanScale",
"description": "Bayesian Post-Estimation on the Mean Scale",
"long_description": "Computes Bayesian posterior distributions of predictions, marginal effects and differences of marginal effects for various generalized linear models.",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-bayestestR",
"R-posterior",
"R-CRAN-recommended",
"R-data.table",
"R-magrittr"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-tibble",
"R-knitr",
"R-testthat",
"R-rmarkdown",
"R-rstanarm",
"R-flextable"
]
}
],
"depends_on": []
},
{
"name": "R-bayesmeta",
"portdir": "R/R-bayesmeta",
"version": "3.4",
"license": "GPL-2+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://gitlab.gwdg.de/croever/bayesmeta",
"description": "Bayesian random-effects meta-analysis and meta-regression",
"long_description": "Bayesian random-effects meta-analysis and meta-regression",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-forestplot",
"R-metafor",
"R-CRAN-recommended",
"R-mvtnorm",
"R-numDeriv"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-rmarkdown",
"R-R.rsp",
"R-compute.es"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-ra4bayesmeta"
]
}
]
},
{
"name": "R-bayesmix",
"portdir": "R/R-bayesmix",
"version": "0.7-6",
"license": "(GPL-2 or GPL-3)",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://statmath.wu.ac.at/~gruen/BayesMix",
"description": "Bayesian Mixture models with JAGS",
"long_description": "Bayesian Mixture models with JAGS",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-coda",
"R-rjags",
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-bayesmlogit",
"portdir": "R/R-bayesmlogit",
"version": "1.0.1",
"license": "GPL-3+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=bayesmlogit",
"description": "Multistate Life Table (MSLT) methodology based on Bayesian approach",
"long_description": "Create life tables with a Bayesian approach, which can be very useful for modelling a complex health process when considering multiple predisposing factors and multiple coexisting health conditions.",
"active": true,
"categories": [
"science",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-dplyr",
"R-ggplot2",
"R-CRAN-recommended",
"R-magrittr"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-rmarkdown"
]
}
],
"depends_on": []
},
{
"name": "R-BayesMultiMode",
"portdir": "R/R-BayesMultiMode",
"version": "0.7.3",
"license": "GPL-3+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/paullabonne/BayesMultiMode",
"description": "Bayesian mode inference",
"long_description": "Bayesian mode inference",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-magrittr",
"R-mvtnorm",
"R-stringr",
"R-dplyr",
"R-tidyr",
"R-ggplot2",
"R-bayesplot",
"R-posterior",
"R-Rdpack",
"R-sn",
"R-MCMCglmm",
"R-ggpubr",
"R-CRAN-recommended",
"R-assertthat",
"R-gtools"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-testthat"
]
}
],
"depends_on": []
},
{
"name": "R-bayesnec",
"portdir": "R/R-bayesnec",
"version": "2.1.3.0",
"license": "GPL-2",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://open-aims.github.io/bayesnec",
"description": "Bayesian No-Effect-Concentration (NEC) algorithm",
"long_description": "Bayesian No-Effect-Concentration (NEC) algorithm",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-tibble",
"R-dplyr",
"R-loo",
"R-purrr",
"R-tidyr",
"R-tidyselect",
"R-ggplot2",
"R-brms",
"R-chk",
"R-formula.tools",
"R-CRAN-recommended",
"R-evaluate",
"R-rlang"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-rstan",
"R-testthat",
"R-rmarkdown"
]
}
],
"depends_on": []
},
{
"name": "R-BayesNetBP",
"portdir": "R/R-BayesNetBP",
"version": "1.6.1",
"license": "(GPL-2 or GPL-3)",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BayesNetBP",
"description": "Bayesian Network Belief Propagation",
"long_description": "Bayesian Network Belief Propagation",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-fields",
"R-graph",
"R-bnlearn",
"R-RColorBrewer",
"R-CRAN-recommended",
"R-doBy",
"R-igraph"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-BayesNSGP",
"portdir": "R/R-BayesNSGP",
"version": "0.1.2",
"license": "GPL-3",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=BayesNSGP",
"description": "Bayesian analysis of non-stationary gaussian process models",
"long_description": "Bayesian analysis of non-stationary gaussian process models",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended",
"R-FNN",
"R-StatMatch",
"R-nimble"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": []
},
{
"name": "R-bayesplay",
"portdir": "R/R-bayesplay",
"version": "0.9.3",
"license": "MIT",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://bayesplay.github.io/bayesplay",
"description": "Bayes factor playground",
"long_description": "Bayes factor playground",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended",
"R-gginnards"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-rmarkdown",
"R-covr",
"R-vdiffr",
"R-patrick",
"R-ggplot2",
"R-knitr",
"R-testthat",
"R-markdown"
]
}
],
"depends_on": []
},
{
"name": "R-bayesplot",
"portdir": "R/R-bayesplot",
"version": "1.11.1",
"license": "GPL-3+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://mc-stan.org/bayesplot",
"description": "Plotting for Bayesian Models",
"long_description": "Plotting for Bayesian Models",
"active": true,
"categories": [
"graphics",
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-reshape2",
"R-tidyselect",
"R-ggplot2",
"R-ggridges",
"R-posterior",
"R-CRAN-recommended",
"R-rlang",
"R-dplyr",
"R-tibble",
"R-glue"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-ggfortify",
"R-hexbin",
"R-rstantools",
"R-loo",
"R-RColorBrewer",
"R-gridExtra",
"R-knitr",
"R-rstan",
"R-scales",
"R-testthat",
"R-rmarkdown",
"R-rstanarm",
"R-shinystan",
"R-vdiffr"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-bvhar",
"R-mcp",
"R-revdbayes",
"R-bssm",
"R-bang",
"R-mvgam",
"R-BayesMultiMode",
"R-shinystan",
"R-blavaan",
"R-baggr",
"R-bayesGAM",
"R-bayesforecast",
"R-RBesT",
"R-lgpr",
"R-rstanarm",
"R-brms",
"R-FlexReg",
"R-multilevelcoda",
"R-walker",
"R-multinma",
"R-MixSIAR",
"R-bayesvl"
]
},
{
"type": "test",
"ports": [
"R-geostan",
"R-pompp",
"R-projpred",
"R-cmdstanr",
"R-performance",
"R-bayesPO",
"R-iwmm",
"R-priorsense",
"R-countSTAR",
"R-tidybayes",
"R-Ecfun",
"R-bsitar",
"R-rmsb",
"R-CausalQueries",
"R-rstan",
"R-loo",
"R-emmeans",
"R-mcmcsae",
"R-bayestestR"
]
}
]
}
]
}