HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"count": 50572,
"next": "https://ports.macports.org/api/v1/ports/?format=api&ordering=created_at&page=812",
"previous": "https://ports.macports.org/api/v1/ports/?format=api&ordering=created_at&page=810",
"results": [
{
"name": "py311-pysal",
"portdir": "python/py-pysal",
"version": "25.1",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/pysal/",
"description": "Python Spatial Analysis Library (PySAL)",
"long_description": "Python Spatial Analysis Library (PySAL) is an open source cross-platform library for geospatial data science with an emphasis on geospatial vector data written in Python.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"py311-installer",
"py311-setuptools",
"py311-wheel",
"py311-setuptools_scm",
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py311-libpysal",
"py311-mgwr",
"py311-momepy",
"py311-pointpats",
"py311-segregation",
"py311-spaghetti",
"python311",
"py311-spint",
"py311-splot",
"py311-spopt",
"py311-spreg",
"py311-spvcm",
"py311-tobler",
"py311-spglm",
"py311-mapclassify",
"py311-access",
"py311-esda",
"py311-giddy",
"py311-inequality"
]
}
],
"depends_on": []
},
{
"name": "py-segregation",
"portdir": "python/py-segregation",
"version": "2.5.3",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/segregation/",
"description": "Segregation Measurement, Inferential Statistics and Decomposition Analysis",
"long_description": "The PySAL segregation package provides a suite of tools for measuring segregation over time and space.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-segregation"
]
}
],
"depends_on": []
},
{
"name": "py39-segregation",
"portdir": "python/py-segregation",
"version": "2.5.2",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/segregation/",
"description": "Segregation Measurement, Inferential Statistics and Decomposition Analysis",
"long_description": "The PySAL segregation package provides a suite of tools for measuring segregation over time and space.",
"active": false,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py39-setuptools",
"clang-17",
"py39-installer",
"py39-build",
"py39-wheel",
"py39-setuptools_scm"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-numpy",
"py39-pandas",
"py39-pyproj",
"py39-scikit-learn",
"py39-seaborn",
"py39-tqdm",
"py39-mapclassify",
"py39-numba",
"py39-matplotlib",
"py39-libpysal",
"py39-joblib",
"py39-geopandas",
"py39-deprecation"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py39-pysal"
]
}
]
},
{
"name": "py310-segregation",
"portdir": "python/py-segregation",
"version": "2.5.3",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/segregation/",
"description": "Segregation Measurement, Inferential Statistics and Decomposition Analysis",
"long_description": "The PySAL segregation package provides a suite of tools for measuring segregation over time and space.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py310-setuptools",
"clang-18",
"py310-installer",
"py310-build",
"py310-wheel",
"py310-setuptools_scm"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-scikit-learn",
"py310-pyproj",
"py310-seaborn",
"py310-numba",
"py310-geopandas",
"py310-mapclassify",
"py310-libpysal",
"py310-joblib",
"py310-tqdm",
"py310-matplotlib",
"py310-pandas",
"py310-numpy",
"py310-deprecation"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-pysal"
]
}
]
},
{
"name": "py311-segregation",
"portdir": "python/py-segregation",
"version": "2.5.3",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/segregation/",
"description": "Segregation Measurement, Inferential Statistics and Decomposition Analysis",
"long_description": "The PySAL segregation package provides a suite of tools for measuring segregation over time and space.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"clang-18",
"py311-setuptools_scm",
"py311-wheel",
"py311-setuptools",
"py311-installer"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-scikit-learn",
"py311-tqdm",
"py311-mapclassify",
"py311-geopandas",
"py311-seaborn",
"py311-numba",
"py311-libpysal",
"py311-joblib",
"py311-matplotlib",
"py311-pandas",
"py311-deprecation",
"py311-pyproj",
"py311-numpy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py311-pysal"
]
}
]
},
{
"name": "py-spaghetti",
"portdir": "python/py-spaghetti",
"version": "1.7.6",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spaghetti/",
"description": "Spatial graphs: networks, topology and inference (spaghetti)",
"long_description": "The PySAL Spatial graphs: networks, topology and inference (spaghetti) package is an open-source Python library for the analysis of network-based spatial data.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-spaghetti"
]
}
],
"depends_on": []
},
{
"name": "py39-spaghetti",
"portdir": "python/py-spaghetti",
"version": "1.7.4",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spaghetti/",
"description": "Spatial graphs: networks, topology and inference (spaghetti)",
"long_description": "The PySAL Spatial graphs: networks, topology and inference (spaghetti) package is an open-source Python library for the analysis of network-based spatial data.",
"active": false,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py39-setuptools",
"clang-17",
"py39-installer",
"py39-build",
"py39-wheel",
"py39-setuptools_scm"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-shapely",
"py39-esda",
"py39-scipy",
"py39-rtree",
"py39-pandas",
"py39-numpy",
"py39-libpysal",
"py39-geopandas"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py39-pysal"
]
},
{
"type": "run",
"ports": [
"py39-spopt"
]
}
]
},
{
"name": "py310-spaghetti",
"portdir": "python/py-spaghetti",
"version": "1.7.6",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spaghetti/",
"description": "Spatial graphs: networks, topology and inference (spaghetti)",
"long_description": "The PySAL Spatial graphs: networks, topology and inference (spaghetti) package is an open-source Python library for the analysis of network-based spatial data.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py310-setuptools",
"clang-18",
"py310-installer",
"py310-build",
"py310-wheel",
"py310-setuptools_scm"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-esda",
"py310-libpysal",
"py310-geopandas",
"py310-rtree",
"py310-shapely",
"py310-pandas",
"py310-scipy",
"py310-numpy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-pysal"
]
},
{
"type": "run",
"ports": [
"py310-spopt"
]
}
]
},
{
"name": "py311-spaghetti",
"portdir": "python/py-spaghetti",
"version": "1.7.6",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spaghetti/",
"description": "Spatial graphs: networks, topology and inference (spaghetti)",
"long_description": "The PySAL Spatial graphs: networks, topology and inference (spaghetti) package is an open-source Python library for the analysis of network-based spatial data.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"clang-18",
"py311-setuptools_scm",
"py311-wheel",
"py311-setuptools",
"py311-installer"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-esda",
"py311-libpysal",
"py311-rtree",
"py311-geopandas",
"py311-shapely",
"py311-scipy",
"py311-pandas",
"py311-numpy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py311-pysal"
]
},
{
"type": "run",
"ports": [
"py311-spopt"
]
}
]
},
{
"name": "py-spglm",
"portdir": "python/py-spglm",
"version": "1.1.0",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spreg/",
"description": "SParse Generalized Linear Models (spglm)",
"long_description": "SParse Generalized Linear Models (spglm) module is an adaptation of a portion of GLM functionality from the Statsmodels package, this it has been simplified and customized for the purposes of serving as the base for several other PySAL modules, namely SpInt and GWR. Currently, it supports the estimation of Gaussian, Poisson, and Logistic regression using only iteratively weighted least squares estimation (IWLS).",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-spglm"
]
}
],
"depends_on": []
},
{
"name": "py39-spglm",
"portdir": "python/py-spglm",
"version": "1.1.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spreg/",
"description": "SParse Generalized Linear Models (spglm)",
"long_description": "SParse Generalized Linear Models (spglm) module is an adaptation of a portion of GLM functionality from the Statsmodels package, this it has been simplified and customized for the purposes of serving as the base for several other PySAL modules, namely SpInt and GWR. Currently, it supports the estimation of Gaussian, Poisson, and Logistic regression using only iteratively weighted least squares estimation (IWLS).",
"active": false,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-17",
"py39-setuptools",
"py39-setuptools_scm",
"py39-wheel",
"py39-build",
"py39-installer"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-libpysal",
"py39-numpy",
"py39-scipy",
"py39-spreg"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py39-pysal"
]
},
{
"type": "run",
"ports": [
"py39-mgwr",
"py39-spint"
]
}
]
},
{
"name": "py310-spglm",
"portdir": "python/py-spglm",
"version": "1.1.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spreg/",
"description": "SParse Generalized Linear Models (spglm)",
"long_description": "SParse Generalized Linear Models (spglm) module is an adaptation of a portion of GLM functionality from the Statsmodels package, this it has been simplified and customized for the purposes of serving as the base for several other PySAL modules, namely SpInt and GWR. Currently, it supports the estimation of Gaussian, Poisson, and Logistic regression using only iteratively weighted least squares estimation (IWLS).",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py310-setuptools",
"py310-setuptools_scm",
"py310-wheel",
"py310-build",
"py310-installer"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-numpy",
"py310-scipy",
"py310-libpysal",
"py310-spreg"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-pysal"
]
},
{
"type": "run",
"ports": [
"py310-spint",
"py310-mgwr"
]
}
]
},
{
"name": "py311-spglm",
"portdir": "python/py-spglm",
"version": "1.1.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spreg/",
"description": "SParse Generalized Linear Models (spglm)",
"long_description": "SParse Generalized Linear Models (spglm) module is an adaptation of a portion of GLM functionality from the Statsmodels package, this it has been simplified and customized for the purposes of serving as the base for several other PySAL modules, namely SpInt and GWR. Currently, it supports the estimation of Gaussian, Poisson, and Logistic regression using only iteratively weighted least squares estimation (IWLS).",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py311-build",
"py311-installer",
"py311-setuptools",
"py311-wheel",
"py311-setuptools_scm"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-numpy",
"py311-scipy",
"py311-libpysal",
"py311-spreg"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py311-pysal"
]
},
{
"type": "run",
"ports": [
"py311-spint",
"py311-mgwr"
]
}
]
},
{
"name": "py-spint",
"portdir": "python/py-spint",
"version": "1.0.7",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spint",
"description": "Spatial Interaction Modeling Package (spint)",
"long_description": "The PySAL Spatial Interaction Modeling Package (spint) module seeks to provide a collection of tools to study spatial interaction processes and analyze spatial interaction data.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-spint"
]
}
],
"depends_on": []
},
{
"name": "py39-spint",
"portdir": "python/py-spint",
"version": "1.0.7",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spint",
"description": "Spatial Interaction Modeling Package (spint)",
"long_description": "The PySAL Spatial Interaction Modeling Package (spint) module seeks to provide a collection of tools to study spatial interaction processes and analyze spatial interaction data.",
"active": false,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py39-setuptools",
"clang-17",
"py39-installer",
"py39-build",
"py39-wheel"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-spreg",
"py39-spglm",
"py39-scipy",
"py39-numpy",
"py39-libpysal"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py39-pysal"
]
}
]
},
{
"name": "py310-spint",
"portdir": "python/py-spint",
"version": "1.0.7",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spint",
"description": "Spatial Interaction Modeling Package (spint)",
"long_description": "The PySAL Spatial Interaction Modeling Package (spint) module seeks to provide a collection of tools to study spatial interaction processes and analyze spatial interaction data.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py310-setuptools",
"clang-18",
"py310-installer",
"py310-build",
"py310-wheel"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-spreg",
"py310-spglm",
"py310-libpysal",
"py310-scipy",
"py310-numpy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-pysal"
]
}
]
},
{
"name": "py311-spint",
"portdir": "python/py-spint",
"version": "1.0.7",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spint",
"description": "Spatial Interaction Modeling Package (spint)",
"long_description": "The PySAL Spatial Interaction Modeling Package (spint) module seeks to provide a collection of tools to study spatial interaction processes and analyze spatial interaction data.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"clang-18",
"py311-wheel",
"py311-setuptools",
"py311-installer"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-spreg",
"py311-spglm",
"py311-libpysal",
"py311-scipy",
"py311-numpy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py311-pysal"
]
}
]
},
{
"name": "py-splot",
"portdir": "python/py-splot",
"version": "1.1.7",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://splot.readthedocs.io/en/latest/",
"description": "Lightweight plotting for geospatial analysis in PySAL (splot)",
"long_description": "splot connects spatial analysis done in PySAL to different popular visualization toolkits like matplotlib. The splot package allows you to create both static plots ready for publication and interactive visualizations for quick iteration and spatial data exploration.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-splot"
]
}
],
"depends_on": []
},
{
"name": "py39-splot",
"portdir": "python/py-splot",
"version": "1.1.7",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://splot.readthedocs.io/en/latest/",
"description": "Lightweight plotting for geospatial analysis in PySAL (splot)",
"long_description": "splot connects spatial analysis done in PySAL to different popular visualization toolkits like matplotlib. The splot package allows you to create both static plots ready for publication and interactive visualizations for quick iteration and spatial data exploration.",
"active": false,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py39-setuptools",
"clang-17",
"py39-installer",
"py39-build",
"py39-wheel"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-seaborn",
"py39-mapclassify",
"py39-esda",
"py39-giddy",
"py39-spreg",
"py39-packaging",
"py39-numpy",
"py39-matplotlib",
"py39-libpysal",
"py39-geopandas"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py39-pysal"
]
}
]
},
{
"name": "py310-splot",
"portdir": "python/py-splot",
"version": "1.1.7",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://splot.readthedocs.io/en/latest/",
"description": "Lightweight plotting for geospatial analysis in PySAL (splot)",
"long_description": "splot connects spatial analysis done in PySAL to different popular visualization toolkits like matplotlib. The splot package allows you to create both static plots ready for publication and interactive visualizations for quick iteration and spatial data exploration.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py310-setuptools",
"clang-18",
"py310-installer",
"py310-build",
"py310-wheel"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-mapclassify",
"py310-esda",
"py310-giddy",
"py310-libpysal",
"py310-spreg",
"py310-geopandas",
"py310-seaborn",
"py310-matplotlib",
"py310-numpy",
"py310-packaging"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-pysal"
]
}
]
},
{
"name": "py311-splot",
"portdir": "python/py-splot",
"version": "1.1.7",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://splot.readthedocs.io/en/latest/",
"description": "Lightweight plotting for geospatial analysis in PySAL (splot)",
"long_description": "splot connects spatial analysis done in PySAL to different popular visualization toolkits like matplotlib. The splot package allows you to create both static plots ready for publication and interactive visualizations for quick iteration and spatial data exploration.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"clang-18",
"py311-wheel",
"py311-setuptools",
"py311-installer"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-seaborn",
"py311-esda",
"py311-giddy",
"py311-libpysal",
"py311-spreg",
"py311-geopandas",
"py311-mapclassify",
"py311-matplotlib",
"py311-numpy",
"py311-packaging"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py311-pysal"
]
}
]
},
{
"name": "py-spopt",
"portdir": "python/py-spopt",
"version": "0.7.0",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spopt",
"description": "Spatial Optimization (spopt)",
"long_description": "Spatial Optimization (spopt) is an open-source Python library for solving optimization problems with spatial data. Originating from the region module in PySAL (Python Spatial Analysis Library), it is under active development for the inclusion of newly proposed models and methods for regionalization, facility location, and transportation-oriented solutions.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-spopt"
]
}
],
"depends_on": []
},
{
"name": "py39-spopt",
"portdir": "python/py-spopt",
"version": "0.5.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spopt",
"description": "Spatial Optimization (spopt)",
"long_description": "Spatial Optimization (spopt) is an open-source Python library for solving optimization problems with spatial data. Originating from the region module in PySAL (Python Spatial Analysis Library), it is under active development for the inclusion of newly proposed models and methods for regionalization, facility location, and transportation-oriented solutions.",
"active": false,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py39-setuptools",
"clang-17",
"py39-installer",
"py39-build",
"py39-wheel",
"py39-setuptools_scm"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-scipy",
"py39-shapely",
"py39-tqdm",
"py39-mapclassify",
"py39-pulp",
"py39-spaghetti",
"py39-scikit-learn",
"py39-pandas",
"py39-numpy",
"py39-networkx",
"py39-libpysal",
"py39-geopandas"
]
},
{
"type": "test",
"ports": [
"py39-codecov",
"py39-coverage",
"py39-matplotlib",
"py39-pytest",
"py39-pytest-cov",
"py39-pytest-xdist",
"py39-mapclassify",
"py39-folium"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py39-pysal"
]
}
]
},
{
"name": "py310-spopt",
"portdir": "python/py-spopt",
"version": "0.6.1",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spopt",
"description": "Spatial Optimization (spopt)",
"long_description": "Spatial Optimization (spopt) is an open-source Python library for solving optimization problems with spatial data. Originating from the region module in PySAL (Python Spatial Analysis Library), it is under active development for the inclusion of newly proposed models and methods for regionalization, facility location, and transportation-oriented solutions.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py310-setuptools",
"clang-18",
"py310-installer",
"py310-build",
"py310-wheel",
"py310-setuptools_scm"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-networkx",
"py310-geopandas",
"py310-mapclassify",
"py310-pulp",
"py310-libpysal",
"py310-pointpats",
"py310-spaghetti",
"py310-scikit-learn",
"py310-tqdm",
"py310-shapely",
"py310-pandas",
"py310-scipy",
"py310-numpy"
]
},
{
"type": "test",
"ports": [
"py310-pytest",
"py310-pytest-cov",
"py310-coverage",
"py310-matplotlib",
"py310-pytest-xdist",
"py310-codecov",
"py310-mapclassify",
"py310-folium"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-pysal"
]
}
]
},
{
"name": "py311-spopt",
"portdir": "python/py-spopt",
"version": "0.7.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spopt",
"description": "Spatial Optimization (spopt)",
"long_description": "Spatial Optimization (spopt) is an open-source Python library for solving optimization problems with spatial data. Originating from the region module in PySAL (Python Spatial Analysis Library), it is under active development for the inclusion of newly proposed models and methods for regionalization, facility location, and transportation-oriented solutions.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"clang-18",
"py311-setuptools_scm",
"py311-wheel",
"py311-setuptools",
"py311-installer"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-mapclassify",
"py311-shapely",
"py311-geopandas",
"py311-pulp",
"py311-libpysal",
"py311-pointpats",
"py311-spaghetti",
"py311-tqdm",
"py311-scipy",
"py311-scikit-learn",
"py311-pandas",
"py311-numpy",
"py311-networkx"
]
},
{
"type": "test",
"ports": [
"py311-pytest",
"py311-coverage",
"py311-pytest-cov",
"py311-pytest-xdist",
"py311-matplotlib",
"py311-mapclassify",
"py311-codecov",
"py311-folium"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py311-pysal"
]
}
]
},
{
"name": "py-spreg",
"portdir": "python/py-spreg",
"version": "1.8.5",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spreg/",
"description": "PySAL Spatial Econometrics Package (spreg)",
"long_description": "PySAL Spatial Econometrics Package (spreg), short for “spatial regression”, is a Python package to estimate simultaneous autoregressive spatial regression models. These models are useful when modeling processes where observations interact with one another.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py314-spreg"
]
}
],
"depends_on": []
},
{
"name": "py39-spreg",
"portdir": "python/py-spreg",
"version": "1.8.4",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spreg/",
"description": "PySAL Spatial Econometrics Package (spreg)",
"long_description": "PySAL Spatial Econometrics Package (spreg), short for “spatial regression”, is a Python package to estimate simultaneous autoregressive spatial regression models. These models are useful when modeling processes where observations interact with one another.",
"active": false,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py39-setuptools",
"py39-setuptools_scm",
"py39-wheel",
"py39-build",
"py39-installer"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-libpysal",
"py39-numpy",
"py39-pandas",
"py39-scikit-learn",
"py39-scipy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py39-pysal"
]
},
{
"type": "run",
"ports": [
"py39-mgwr",
"py39-spglm",
"py39-spint",
"py39-spvcm",
"py39-splot"
]
}
]
},
{
"name": "py310-spreg",
"portdir": "python/py-spreg",
"version": "1.8.5",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spreg/",
"description": "PySAL Spatial Econometrics Package (spreg)",
"long_description": "PySAL Spatial Econometrics Package (spreg), short for “spatial regression”, is a Python package to estimate simultaneous autoregressive spatial regression models. These models are useful when modeling processes where observations interact with one another.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py310-setuptools",
"py310-setuptools_scm",
"py310-wheel",
"py310-build",
"py310-installer"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-numpy",
"py310-scipy",
"py310-pandas",
"py310-scikit-learn",
"py310-libpysal"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-pysal"
]
},
{
"type": "run",
"ports": [
"py310-splot",
"py310-spvcm",
"py310-spglm",
"py310-spint",
"py310-mgwr"
]
}
]
},
{
"name": "py311-spreg",
"portdir": "python/py-spreg",
"version": "1.8.5",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/spreg/",
"description": "PySAL Spatial Econometrics Package (spreg)",
"long_description": "PySAL Spatial Econometrics Package (spreg), short for “spatial regression”, is a Python package to estimate simultaneous autoregressive spatial regression models. These models are useful when modeling processes where observations interact with one another.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py311-build",
"py311-installer",
"py311-setuptools",
"py311-wheel",
"py311-setuptools_scm"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-numpy",
"py311-pandas",
"py311-scikit-learn",
"py311-scipy",
"py311-libpysal"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py311-pysal"
]
},
{
"type": "run",
"ports": [
"py311-splot",
"py311-spvcm",
"py311-spglm",
"py311-spint",
"py311-mgwr"
]
}
]
},
{
"name": "py-spvcm",
"portdir": "python/py-spvcm",
"version": "0.3.0",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spvcm",
"description": "Multilevel spatially-correlated variance components models (spvcm)",
"long_description": "The PySAL spvcm is a package to estimate spatially-correlated variance components models/varying intercept models. In addition to a general toolkit to conduct Gibbs sampling in Python, the package also provides an interface to PyMC3 and CODA. For a complete overview, consult the walkthrough.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-spvcm"
]
}
],
"depends_on": []
},
{
"name": "py39-spvcm",
"portdir": "python/py-spvcm",
"version": "0.3.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spvcm",
"description": "Multilevel spatially-correlated variance components models (spvcm)",
"long_description": "The PySAL spvcm is a package to estimate spatially-correlated variance components models/varying intercept models. In addition to a general toolkit to conduct Gibbs sampling in Python, the package also provides an interface to PyMC3 and CODA. For a complete overview, consult the walkthrough.",
"active": false,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py39-setuptools",
"clang-17",
"py39-installer",
"py39-build",
"py39-wheel"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-spreg",
"py39-seaborn",
"py39-scipy",
"py39-pandas",
"py39-numpy",
"py39-libpysal"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py39-pysal"
]
}
]
},
{
"name": "py310-spvcm",
"portdir": "python/py-spvcm",
"version": "0.3.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spvcm",
"description": "Multilevel spatially-correlated variance components models (spvcm)",
"long_description": "The PySAL spvcm is a package to estimate spatially-correlated variance components models/varying intercept models. In addition to a general toolkit to conduct Gibbs sampling in Python, the package also provides an interface to PyMC3 and CODA. For a complete overview, consult the walkthrough.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py310-setuptools",
"clang-18",
"py310-installer",
"py310-build",
"py310-wheel"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-spreg",
"py310-libpysal",
"py310-seaborn",
"py310-pandas",
"py310-scipy",
"py310-numpy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-pysal"
]
}
]
},
{
"name": "py311-spvcm",
"portdir": "python/py-spvcm",
"version": "0.3.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/pysal/spvcm",
"description": "Multilevel spatially-correlated variance components models (spvcm)",
"long_description": "The PySAL spvcm is a package to estimate spatially-correlated variance components models/varying intercept models. In addition to a general toolkit to conduct Gibbs sampling in Python, the package also provides an interface to PyMC3 and CODA. For a complete overview, consult the walkthrough.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"clang-18",
"py311-wheel",
"py311-setuptools",
"py311-installer"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-spreg",
"py311-libpysal",
"py311-seaborn",
"py311-scipy",
"py311-pandas",
"py311-numpy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py311-pysal"
]
}
]
},
{
"name": "py-tobler",
"portdir": "python/py-tobler",
"version": "0.13.0",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/tobler/",
"description": "Spatial interpolation, Dasymetric Mapping, & Change of Support (tobler)",
"long_description": "The PySAL tobler is a library for areal interpolation and dasymetric mapping.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py314-tobler"
]
}
],
"depends_on": []
},
{
"name": "py39-tobler",
"portdir": "python/py-tobler",
"version": "0.12.1",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/tobler/",
"description": "Spatial interpolation, Dasymetric Mapping, & Change of Support (tobler)",
"long_description": "The PySAL tobler is a library for areal interpolation and dasymetric mapping.",
"active": false,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py39-setuptools",
"clang-17",
"py39-installer",
"py39-build",
"py39-wheel",
"py39-setuptools_scm"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-scipy",
"py39-statsmodels",
"py39-tqdm",
"py39-rasterstats",
"py39-rasterio",
"py39-pandas",
"py39-numpy",
"py39-libpysal",
"py39-joblib",
"py39-geopandas"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py39-pysal"
]
}
]
},
{
"name": "py310-tobler",
"portdir": "python/py-tobler",
"version": "0.13.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/tobler/",
"description": "Spatial interpolation, Dasymetric Mapping, & Change of Support (tobler)",
"long_description": "The PySAL tobler is a library for areal interpolation and dasymetric mapping.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py310-setuptools",
"clang-18",
"py310-installer",
"py310-build",
"py310-wheel",
"py310-setuptools_scm"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-rasterio",
"py310-geopandas",
"py310-rasterstats",
"py310-libpysal",
"py310-joblib",
"py310-tqdm",
"py310-statsmodels",
"py310-pandas",
"py310-scipy",
"py310-numpy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-pysal"
]
}
]
},
{
"name": "py311-tobler",
"portdir": "python/py-tobler",
"version": "0.13.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pysal.org/tobler/",
"description": "Spatial interpolation, Dasymetric Mapping, & Change of Support (tobler)",
"long_description": "The PySAL tobler is a library for areal interpolation and dasymetric mapping.",
"active": true,
"categories": [
"python",
"gis"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"clang-18",
"py311-setuptools_scm",
"py311-wheel",
"py311-setuptools",
"py311-installer"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-rasterio",
"py311-geopandas",
"py311-rasterstats",
"py311-libpysal",
"py311-statsmodels",
"py311-tqdm",
"py311-scipy",
"py311-joblib",
"py311-pandas",
"py311-numpy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py311-pysal"
]
}
]
},
{
"name": "uvw2",
"portdir": "devel/uvw",
"version": "2.12.1",
"license": "MIT",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/skypjack/uvw",
"description": "Header-only, event based, tiny and easy to use libuv wrapper in modern C++",
"long_description": "Header-only, event based, tiny and easy to use libuv wrapper in modern C++",
"active": true,
"categories": [
"devel"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [
"debug",
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"cmake",
"pkgconfig",
"clang-17"
]
},
{
"type": "lib",
"ports": [
"libuv"
]
}
],
"depends_on": []
},
{
"name": "R-CCA",
"portdir": "R/R-CCA",
"version": "1.2.2",
"license": "GPL-2+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=CCA",
"description": "Canonical Correlation Analysis",
"long_description": "Canonical Correlation Analysis",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-fields",
"R-fda",
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-RFCCA"
]
}
]
},
{
"name": "R-CRF",
"portdir": "R/R-CRF",
"version": "0.4-3",
"license": "GPL-2+",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/wulingyun/CRF",
"description": "Conditional Random Fields",
"long_description": "Conditional Random Fields",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-rmarkdown",
"R-Rglpk"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-Corbi"
]
}
]
},
{
"name": "R-Corbi",
"portdir": "R/R-Corbi",
"version": "0.6-2",
"license": "GPL-2+",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=Corbi",
"description": "Collection of rudimentary bioinformatics tools",
"long_description": "Collection of rudimentary bioinformatics tools",
"active": true,
"categories": [
"science",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-CRF",
"R-CRAN-recommended",
"R-igraph"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-mpmi",
"R-knitr",
"R-rmarkdown",
"R-matrixcalc",
"R-fitdistrplus",
"R-BiocParallel"
]
}
],
"depends_on": []
},
{
"name": "R-ExprNet",
"portdir": "R/R-ExprNet",
"version": "1.0.0",
"license": "GPL-3+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=ExprNet",
"description": "Characterizing differential expression of selected edges on a network",
"long_description": "Characterizing differential expression of selected edges on a network",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-doParallel",
"R-CRAN-recommended",
"R-here",
"R-foreach",
"R-igraph"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-testthat",
"R-readr"
]
}
],
"depends_on": []
},
{
"name": "R-FatTailsR",
"portdir": "R/R-FatTailsR",
"version": "1.8-5",
"license": "GPL-2",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://www.inmodelia.com/fattailsr-en.html",
"description": "Kiener distributions and fat tails in finance",
"long_description": "Kiener distributions and fat tails in finance",
"active": true,
"categories": [
"science",
"math",
"finance",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended",
"R-timeSeries",
"R-minpack.lm"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-xts",
"R-zoo"
]
}
],
"depends_on": [
{
"type": "test",
"ports": [
"R-fitteR"
]
}
]
},
{
"name": "R-FuzzyClass",
"portdir": "R/R-FuzzyClass",
"version": "0.1.6",
"license": "MIT",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/leapigufpb/FuzzyClass",
"description": "Fuzzy and non-fuzzy classifiers",
"long_description": "Fuzzy and non-fuzzy classifiers",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-purrr",
"R-Rdpack",
"R-doParallel",
"R-foreach",
"R-rootSolve",
"R-caTools",
"R-EnvStats",
"R-trapezoid",
"R-CRAN-recommended",
"R-e1071",
"R-mvtnorm"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-dplyr",
"R-knitr",
"R-testthat",
"R-rmarkdown",
"R-maxLik"
]
}
],
"depends_on": []
},
{
"name": "R-MVLM",
"portdir": "R/R-MVLM",
"version": "0.1.4",
"license": "GPL-2+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=MVLM",
"description": "Multivariate linear model with analytic p-values",
"long_description": "Multivariate linear model with analytic p-values",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-CompQuadForm",
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-rmarkdown",
"R-knitr"
]
}
],
"depends_on": []
},
{
"name": "R-RFCCA",
"portdir": "R/R-RFCCA",
"version": "2.0.0",
"license": "GPL-3+",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/calakus/RFCCA",
"description": "Random Forest with Canonical Correlation Analysis",
"long_description": "Random Forest with Canonical Correlation Analysis",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [
"clang10",
"clang11",
"clang12",
"clang13",
"clang14",
"clang15",
"clang16",
"clang50",
"clang60",
"clang70",
"clang80",
"clang90",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gccdevel",
"gfortran"
],
"dependencies": [
{
"type": "build",
"ports": [
"gcc13",
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended",
"libgcc",
"R-PMA",
"R-CCA"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-knitr",
"R-testthat",
"R-rmarkdown"
]
}
],
"depends_on": []
},
{
"name": "R-RTMB",
"portdir": "R/R-RTMB",
"version": "1.6",
"license": "GPL-2+",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=RTMB",
"description": "R bindings for TMB",
"long_description": "Native R interface to TMB (Template Model Builder), so models can be written entirely in R rather than C++.",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [
"clang10",
"clang11",
"clang12",
"clang13",
"clang14",
"clang15",
"clang16",
"clang50",
"clang60",
"clang70",
"clang80",
"clang90",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gccdevel",
"gfortran"
],
"dependencies": [
{
"type": "build",
"ports": [
"gcc13",
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-TMB",
"libgcc13",
"R-CRAN-recommended",
"libgcc",
"R-Rcpp",
"R-RcppEigen"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-numDeriv",
"R-knitr",
"R-igraph",
"R-rmarkdown",
"R-tinytest"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"R-LaMa"
]
}
]
},
{
"name": "R-WPKDE",
"portdir": "R/R-WPKDE",
"version": "0.1",
"license": "GPL",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=WPKDE",
"description": "Weighted Piece-wise Kernel Density Estimation",
"long_description": "Weighted Piece-wise Kernel Density Estimation",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"R",
"clang-16"
]
},
{
"type": "lib",
"ports": [
"R-CRAN-recommended"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-mvtnorm"
]
}
],
"depends_on": []
},
{
"name": "R-ardl.nardl",
"portdir": "R/R-ardl.nardl",
"version": "1.3.0",
"license": "GPL-2+",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://cran.r-project.org/package=ardl.nardl",
"description": "Linear and non-linear autoregressive distributed lag models",
"long_description": "Linear and non-linear autoregressive distributed lag models",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-stringr",
"R-dplyr",
"R-purrr",
"R-tidyselect",
"R-lmtest",
"R-tseries",
"R-texreg",
"R-rlist",
"R-car",
"R-nardl",
"R-gets",
"R-CRAN-recommended",
"R-plyr",
"R-sandwich"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-dynamac"
]
}
],
"depends_on": []
},
{
"name": "R-brms.mmrm",
"portdir": "R/R-brms.mmrm",
"version": "1.1.1",
"license": "MIT",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://openpharma.github.io/brms.mmrm",
"description": "Bayesian MMRMs using R-brms",
"long_description": "Bayesian MMRMs using R-brms",
"active": true,
"categories": [
"science",
"math",
"R"
],
"maintainers": [
{
"name": "vital.had",
"github": "barracuda156",
"ports_count": 2571
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"R"
]
},
{
"type": "lib",
"ports": [
"R-zoo",
"R-dplyr",
"R-purrr",
"R-tidyr",
"R-tidyselect",
"R-ggplot2",
"R-brms",
"R-ggridges",
"R-posterior",
"R-trialr",
"R-CRAN-recommended",
"R-rlang",
"R-tibble"
]
},
{
"type": "run",
"ports": [
"R"
]
},
{
"type": "test",
"ports": [
"R-BH",
"R-Rcpp",
"R-RcppEigen",
"R-RcppParallel",
"R-StanHeaders",
"R-knitr",
"R-rstan",
"R-testthat",
"R-markdown",
"R-rmarkdown",
"R-emmeans",
"R-gt",
"R-fst",
"R-gtsummary",
"R-mmrm"
]
}
],
"depends_on": []
}
]
}