HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"count": 49836,
"next": "https://ports.macports.org/api/v1/ports/?format=api&ordering=-updated_at&page=85",
"previous": "https://ports.macports.org/api/v1/ports/?format=api&ordering=-updated_at&page=83",
"results": [
{
"name": "py27-cidrize",
"portdir": "python/py-cidrize",
"version": "0.6.4",
"license": "BSD",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/jathanism/cidrize/",
"description": "Cidrize parses IPv4/IPv6 addresses, CIDRs, ranges, and wildcard matches.",
"long_description": "Cidrize parses IPv4/IPv6 addresses, CIDRs, ranges, and wildcard matches.",
"active": false,
"categories": [
"devel",
"python"
],
"maintainers": [
{
"name": "stromnov",
"github": "stromnov",
"ports_count": 2777
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-9.0",
"py27-setuptools"
]
},
{
"type": "lib",
"ports": [
"python27",
"py27-netaddr"
]
}
],
"depends_on": []
},
{
"name": "py313-decli",
"portdir": "python/py-decli",
"version": "0.6.3",
"license": "MIT",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/Woile/decli",
"description": "Minimal declarative cli tool",
"long_description": "Decli is minimal wrapper around argparse. It's useful when writing big applications that have many arguments and subcommands, this way it'll be more clear.",
"active": true,
"categories": [
"python"
],
"maintainers": [
{
"name": "harens",
"github": "harens",
"ports_count": 149
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py313-build",
"py313-installer",
"py313-poetry-core"
]
},
{
"type": "lib",
"ports": [
"python313"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py-decli"
]
}
]
},
{
"name": "py312-decli",
"portdir": "python/py-decli",
"version": "0.6.3",
"license": "MIT",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/Woile/decli",
"description": "Minimal declarative cli tool",
"long_description": "Decli is minimal wrapper around argparse. It's useful when writing big applications that have many arguments and subcommands, this way it'll be more clear.",
"active": true,
"categories": [
"python"
],
"maintainers": [
{
"name": "harens",
"github": "harens",
"ports_count": 149
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py312-build",
"py312-installer",
"py312-poetry-core",
"clang-18"
]
},
{
"type": "lib",
"ports": [
"python312"
]
}
],
"depends_on": []
},
{
"name": "py311-decli",
"portdir": "python/py-decli",
"version": "0.6.3",
"license": "MIT",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/Woile/decli",
"description": "Minimal declarative cli tool",
"long_description": "Decli is minimal wrapper around argparse. It's useful when writing big applications that have many arguments and subcommands, this way it'll be more clear.",
"active": true,
"categories": [
"python"
],
"maintainers": [
{
"name": "harens",
"github": "harens",
"ports_count": 149
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"py311-installer",
"py311-poetry-core",
"clang-18"
]
},
{
"type": "lib",
"ports": [
"python311"
]
}
],
"depends_on": []
},
{
"name": "py310-decli",
"portdir": "python/py-decli",
"version": "0.6.3",
"license": "MIT",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/Woile/decli",
"description": "Minimal declarative cli tool",
"long_description": "Decli is minimal wrapper around argparse. It's useful when writing big applications that have many arguments and subcommands, this way it'll be more clear.",
"active": true,
"categories": [
"python"
],
"maintainers": [
{
"name": "harens",
"github": "harens",
"ports_count": 149
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py310-build",
"py310-poetry-core",
"py310-installer",
"clang-18"
]
},
{
"type": "lib",
"ports": [
"python310"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"commitizen"
]
}
]
},
{
"name": "py-decli",
"portdir": "python/py-decli",
"version": "0.6.3",
"license": "MIT",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/Woile/decli",
"description": "Minimal declarative cli tool",
"long_description": "Decli is minimal wrapper around argparse. It's useful when writing big applications that have many arguments and subcommands, this way it'll be more clear.",
"active": true,
"categories": [
"python"
],
"maintainers": [
{
"name": "harens",
"github": "harens",
"ports_count": 149
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-decli"
]
}
],
"depends_on": []
},
{
"name": "steampipe",
"portdir": "net/steampipe",
"version": "2.3.2",
"license": "AGPL-3",
"platforms": "darwin freebsd linux",
"epoch": 0,
"replaced_by": null,
"homepage": "https://steampipe.io",
"description": "Use SQL to instantly query your cloud services (AWS, Azure, GCP and more).",
"long_description": "Steampipe is the universal interface to APIs. Use SQL to query cloud infrastructure, SaaS, code, logs, and more.",
"active": true,
"categories": [
"sysutils",
"net"
],
"maintainers": [
{
"name": "herby.gillot",
"github": "herbygillot",
"ports_count": 1016
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"go",
"clang-18"
]
}
],
"depends_on": []
},
{
"name": "py39-decli",
"portdir": "python/py-decli",
"version": "0.5.2",
"license": "MIT",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/Woile/decli",
"description": "Minimal declarative cli tool",
"long_description": "Decli is minimal wrapper around argparse. It's useful when writing big applications that have many arguments and subcommands, this way it'll be more clear.",
"active": false,
"categories": [
"python"
],
"maintainers": [
{
"name": "harens",
"github": "harens",
"ports_count": 149
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py39-setuptools",
"py39-wheel",
"py39-build",
"py39-installer",
"clang-17"
]
},
{
"type": "lib",
"ports": [
"python39"
]
}
],
"depends_on": []
},
{
"name": "py38-decli",
"portdir": "python/py-decli",
"version": "0.5.2",
"license": "MIT",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/Woile/decli",
"description": "Minimal declarative cli tool",
"long_description": "Decli is minimal wrapper around argparse. It's useful when writing big applications that have many arguments and subcommands, this way it'll be more clear.",
"active": false,
"categories": [
"python"
],
"maintainers": [
{
"name": "harens",
"github": "harens",
"ports_count": 149
}
],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py38-setuptools",
"clang-14"
]
},
{
"type": "lib",
"ports": [
"python38"
]
}
],
"depends_on": []
},
{
"name": "py313-pytorch",
"portdir": "python/py-pytorch",
"version": "2.9.0",
"license": "BSD",
"platforms": "{darwin >= 19}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pytorch.org/",
"description": "Tensors and dynamic neural networks in Python with strong GPU acceleration",
"long_description": "PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration; Deep neural networks built on a tape-based autograd system. You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"clang13",
"clang14",
"clang15",
"clang16",
"clang17",
"clang18",
"clang19",
"clang20",
"clang21",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gcc14",
"gcc15",
"gccdevel",
"gfortran",
"mpich",
"openmpi",
"mkl",
"mps"
],
"dependencies": [
{
"type": "build",
"ports": [
"py313-requests",
"clang-20",
"py313-mkl-include",
"cctools",
"cmake",
"git",
"ninja",
"doxygen",
"py313-build",
"py313-installer",
"py313-setuptools",
"py313-wheel"
]
},
{
"type": "lib",
"ports": [
"py313-yaml",
"py313-pybind11",
"py313-future",
"py313-mkl",
"zstd",
"gflags",
"google-glog",
"protobuf3-cpp",
"libomp",
"eigen3",
"python313",
"py313-sympy",
"py313-typing_extensions",
"py313-six",
"py313-click",
"py313-numpy"
]
},
{
"type": "run",
"ports": [
"py313-packaging",
"py313-zstd",
"py313-onnx"
]
},
{
"type": "test",
"ports": [
"py313-pytest"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py-pytorch"
]
}
]
},
{
"name": "py312-pytorch",
"portdir": "python/py-pytorch",
"version": "2.9.0",
"license": "BSD",
"platforms": "{darwin >= 19}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pytorch.org/",
"description": "Tensors and dynamic neural networks in Python with strong GPU acceleration",
"long_description": "PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration; Deep neural networks built on a tape-based autograd system. You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"clang13",
"clang14",
"clang15",
"clang16",
"clang17",
"clang18",
"clang19",
"clang20",
"clang21",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gcc14",
"gcc15",
"gccdevel",
"gfortran",
"mpich",
"openmpi",
"mkl",
"mps"
],
"dependencies": [
{
"type": "build",
"ports": [
"py312-requests",
"clang-20",
"py312-mkl-include",
"cctools",
"cmake",
"git",
"ninja",
"doxygen",
"py312-build",
"py312-installer",
"py312-setuptools",
"py312-wheel"
]
},
{
"type": "fetch",
"ports": [
"git"
]
},
{
"type": "lib",
"ports": [
"py312-sympy",
"py312-mkl",
"py312-future",
"zstd",
"gflags",
"google-glog",
"protobuf3-cpp",
"libomp",
"eigen3",
"python312",
"py312-typing_extensions",
"py312-six",
"py312-numpy",
"py312-click",
"py312-pybind11",
"py312-yaml"
]
},
{
"type": "run",
"ports": [
"py312-onnx",
"py312-zstd",
"py312-packaging"
]
},
{
"type": "test",
"ports": [
"py312-pytest"
]
}
],
"depends_on": []
},
{
"name": "py311-pytorch",
"portdir": "python/py-pytorch",
"version": "2.9.0",
"license": "BSD",
"platforms": "{darwin >= 19}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pytorch.org/",
"description": "Tensors and dynamic neural networks in Python with strong GPU acceleration",
"long_description": "PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration; Deep neural networks built on a tape-based autograd system. You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"clang13",
"clang14",
"clang15",
"clang16",
"clang17",
"clang18",
"clang19",
"clang20",
"clang21",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gcc14",
"gcc15",
"gccdevel",
"gfortran",
"mpich",
"openmpi",
"mkl",
"mps"
],
"dependencies": [
{
"type": "build",
"ports": [
"py311-requests",
"clang-20",
"py311-mkl-include",
"cctools",
"cmake",
"git",
"ninja",
"doxygen",
"py311-build",
"py311-installer",
"py311-setuptools",
"py311-wheel"
]
},
{
"type": "fetch",
"ports": [
"git"
]
},
{
"type": "lib",
"ports": [
"py311-yaml",
"py311-future",
"py311-mkl",
"zstd",
"gflags",
"google-glog",
"protobuf3-cpp",
"libomp",
"eigen3",
"python311",
"py311-typing_extensions",
"py311-sympy",
"py311-pybind11",
"py311-six",
"py311-click",
"py311-numpy"
]
},
{
"type": "run",
"ports": [
"py311-zstd",
"py311-onnx",
"py311-packaging"
]
},
{
"type": "test",
"ports": [
"py311-pytest"
]
}
],
"depends_on": [
{
"type": "test",
"ports": [
"py311-huggingface_hub"
]
}
]
},
{
"name": "py310-pytorch",
"portdir": "python/py-pytorch",
"version": "2.9.0",
"license": "BSD",
"platforms": "{darwin >= 19}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pytorch.org/",
"description": "Tensors and dynamic neural networks in Python with strong GPU acceleration",
"long_description": "PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration; Deep neural networks built on a tape-based autograd system. You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"clang13",
"clang14",
"clang15",
"clang16",
"clang17",
"clang18",
"clang19",
"clang20",
"clang21",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gcc14",
"gcc15",
"gccdevel",
"gfortran",
"mpich",
"openmpi",
"mkl",
"mps"
],
"dependencies": [
{
"type": "build",
"ports": [
"py310-mkl-include",
"clang-20",
"py310-installer",
"cctools",
"cmake",
"git",
"ninja",
"doxygen",
"py310-setuptools",
"py310-requests",
"py310-wheel",
"py310-build"
]
},
{
"type": "fetch",
"ports": [
"git"
]
},
{
"type": "lib",
"ports": [
"py310-sympy",
"py310-pybind11",
"py310-mkl",
"zstd",
"gflags",
"google-glog",
"protobuf3-cpp",
"libomp",
"eigen3",
"python310",
"py310-typing_extensions",
"py310-click",
"py310-six",
"py310-numpy",
"py310-future",
"py310-yaml"
]
},
{
"type": "run",
"ports": [
"py310-onnx",
"py310-zstd",
"py310-packaging"
]
},
{
"type": "test",
"ports": [
"py310-pytest"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-torchaudio",
"py310-torchvision",
"py310-torchtext"
]
},
{
"type": "run",
"ports": [
"py310-sentence-transformers",
"py310-transformers",
"py310-kraken",
"py310-fairseq",
"py310-pytorch-lightning",
"py310-allennlp"
]
},
{
"type": "test",
"ports": [
"py310-huggingface_hub"
]
}
]
},
{
"name": "py-pytorch",
"portdir": "python/py-pytorch",
"version": "2.9.0",
"license": "BSD",
"platforms": "{darwin >= 19}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pytorch.org/",
"description": "Tensors and dynamic neural networks in Python with strong GPU acceleration",
"long_description": "PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration; Deep neural networks built on a tape-based autograd system. You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"clang13",
"clang14",
"clang15",
"clang16",
"clang17",
"clang18",
"clang19",
"clang20",
"clang21",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gcc14",
"gcc15",
"gccdevel",
"gfortran",
"mpich",
"openmpi",
"mkl",
"mps"
],
"dependencies": [
{
"type": "build",
"ports": [
"clang-20"
]
},
{
"type": "fetch",
"ports": [
"git"
]
},
{
"type": "lib",
"ports": [
"py313-pytorch"
]
}
],
"depends_on": []
},
{
"name": "py312-hf-xet",
"portdir": "python/py-hf-xet",
"version": "1.2.0",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/huggingface/xet-core",
"description": "hf-xet enables huggingface_hub to utilize xet storage for uploading and downloading to HF Hub.",
"long_description": "hf-xet enables huggingface_hub to utilize xet storage for uploading and downloading to HF Hub.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py312-build",
"py312-installer",
"py312-maturin",
"py312-setuptools-rust",
"clang-18"
]
},
{
"type": "lib",
"ports": [
"python312"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py312-huggingface_hub"
]
}
]
},
{
"name": "py313-hf-xet",
"portdir": "python/py-hf-xet",
"version": "1.2.0",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/huggingface/xet-core",
"description": "hf-xet enables huggingface_hub to utilize xet storage for uploading and downloading to HF Hub.",
"long_description": "hf-xet enables huggingface_hub to utilize xet storage for uploading and downloading to HF Hub.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py313-build",
"py313-installer",
"py313-setuptools-rust",
"py313-maturin"
]
},
{
"type": "lib",
"ports": [
"python313"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py-hf-xet"
]
},
{
"type": "run",
"ports": [
"py313-huggingface_hub"
]
}
]
},
{
"name": "py311-hf-xet",
"portdir": "python/py-hf-xet",
"version": "1.2.0",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/huggingface/xet-core",
"description": "hf-xet enables huggingface_hub to utilize xet storage for uploading and downloading to HF Hub.",
"long_description": "hf-xet enables huggingface_hub to utilize xet storage for uploading and downloading to HF Hub.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"py311-installer",
"py311-setuptools-rust",
"py311-maturin",
"clang-18"
]
},
{
"type": "lib",
"ports": [
"python311"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py311-huggingface_hub"
]
}
]
},
{
"name": "py310-hf-xet",
"portdir": "python/py-hf-xet",
"version": "1.2.0",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/huggingface/xet-core",
"description": "hf-xet enables huggingface_hub to utilize xet storage for uploading and downloading to HF Hub.",
"long_description": "hf-xet enables huggingface_hub to utilize xet storage for uploading and downloading to HF Hub.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py310-build",
"py310-setuptools-rust",
"py310-maturin",
"py310-installer",
"clang-18"
]
},
{
"type": "lib",
"ports": [
"python310"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py310-huggingface_hub"
]
}
]
},
{
"name": "py-hf-xet",
"portdir": "python/py-hf-xet",
"version": "1.2.0",
"license": "Apache-2",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/huggingface/xet-core",
"description": "hf-xet enables huggingface_hub to utilize xet storage for uploading and downloading to HF Hub.",
"long_description": "hf-xet enables huggingface_hub to utilize xet storage for uploading and downloading to HF Hub.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-hf-xet"
]
}
],
"depends_on": []
},
{
"name": "py39-pytorch",
"portdir": "python/py-pytorch",
"version": "2.3.0",
"license": "BSD",
"platforms": "{darwin >= 19}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pytorch.org/",
"description": "Tensors and dynamic neural networks in Python with strong GPU acceleration",
"long_description": "PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration; Deep neural networks built on a tape-based autograd system. You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.",
"active": false,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"clang13",
"clang14",
"clang15",
"clang16",
"clang17",
"clang18",
"clang19",
"clang20",
"clang21",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gcc14",
"gcc15",
"gccdevel",
"gfortran",
"mpich",
"openmpi",
"mkl",
"mps"
],
"dependencies": [
{
"type": "build",
"ports": [
"clang-20",
"cctools",
"cmake",
"git",
"ninja",
"py39-astunparse",
"py39-mkl-include",
"py39-requests",
"py39-setuptools",
"py39-wheel",
"doxygen",
"py39-build",
"py39-installer"
]
},
{
"type": "fetch",
"ports": [
"git"
]
},
{
"type": "lib",
"ports": [
"py39-click",
"py39-future",
"py39-mkl",
"py39-numpy",
"py39-pybind11",
"py39-sympy",
"py39-typing_extensions",
"py39-yaml",
"onetbb",
"zstd",
"leveldb",
"lmdb",
"gflags",
"gmp",
"google-glog",
"mpfr",
"zmq",
"opencv4",
"libomp",
"python39",
"OpenBLAS",
"eigen3",
"py39-cffi"
]
},
{
"type": "run",
"ports": [
"py39-onnx"
]
},
{
"type": "test",
"ports": [
"py39-pytest"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py39-torchaudio",
"py39-torchtext",
"py39-torchvision"
]
},
{
"type": "run",
"ports": [
"py39-sentence-transformers",
"py39-transformers",
"py39-allennlp",
"py39-kraken",
"py39-pytorch-lightning",
"py39-fairseq"
]
},
{
"type": "test",
"ports": [
"py39-huggingface_hub"
]
}
]
},
{
"name": "py37-pytorch",
"portdir": "python/py-pytorch",
"version": "2.0.0",
"license": "BSD",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pytorch.org/",
"description": "Tensors and dynamic neural networks in Python with strong GPU acceleration",
"long_description": "PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration; Deep neural networks built on a tape-based autograd system. You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.",
"active": false,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"clang10",
"clang11",
"clang12",
"clang13",
"clang14",
"clang15",
"clang16",
"clang50",
"clang60",
"clang70",
"clang80",
"clang90",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gccdevel",
"gfortran",
"mpich",
"openmpi",
"mkl",
"mps"
],
"dependencies": [
{
"type": "build",
"ports": [
"clang-15",
"cctools",
"cmake",
"git",
"py37-mkl-include",
"py37-setuptools",
"doxygen"
]
},
{
"type": "fetch",
"ports": [
"git"
]
},
{
"type": "lib",
"ports": [
"zmq",
"opencv4",
"libomp",
"python37",
"OpenBLAS",
"eigen3",
"py37-cffi",
"py37-click",
"py37-future",
"py37-mkl",
"py37-numpy",
"py37-pybind11",
"py37-typing_extensions",
"py37-yaml",
"zstd",
"leveldb",
"lmdb",
"gflags",
"gmp",
"google-glog",
"mpfr",
"tbb"
]
},
{
"type": "run",
"ports": [
"py37-onnx"
]
},
{
"type": "test",
"ports": [
"py37-pytest"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py37-torchtext",
"py37-torchaudio",
"py37-torchvision"
]
},
{
"type": "run",
"ports": [
"py37-fairseq",
"py37-pytorch-lightning"
]
}
]
},
{
"name": "py38-pytorch",
"portdir": "python/py-pytorch",
"version": "2.3.0",
"license": "BSD",
"platforms": "{darwin >= 19}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://pytorch.org/",
"description": "Tensors and dynamic neural networks in Python with strong GPU acceleration",
"long_description": "PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration; Deep neural networks built on a tape-based autograd system. You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.",
"active": false,
"categories": [
"python"
],
"maintainers": [],
"variants": [
"clang10",
"clang11",
"clang12",
"clang13",
"clang14",
"clang15",
"clang16",
"clang17",
"clang18",
"clang50",
"clang60",
"clang70",
"clang80",
"clang90",
"clangdevel",
"g95",
"gcc10",
"gcc11",
"gcc12",
"gcc13",
"gcc14",
"gccdevel",
"gfortran",
"mpich",
"openmpi",
"mkl",
"mps"
],
"dependencies": [
{
"type": "build",
"ports": [
"clang-16",
"cctools",
"cmake",
"git",
"ninja",
"py38-astunparse",
"py38-mkl-include",
"py38-requests",
"py38-setuptools",
"py38-wheel",
"doxygen",
"py38-build",
"py38-installer"
]
},
{
"type": "fetch",
"ports": [
"git"
]
},
{
"type": "lib",
"ports": [
"py38-click",
"py38-future",
"py38-mkl",
"py38-numpy",
"py38-pybind11",
"py38-typing_extensions",
"py38-yaml",
"onetbb",
"zstd",
"leveldb",
"lmdb",
"gflags",
"gmp",
"google-glog",
"mpfr",
"zmq",
"opencv4",
"libomp",
"python38",
"OpenBLAS",
"eigen3",
"py38-cffi"
]
},
{
"type": "run",
"ports": [
"py38-onnx"
]
},
{
"type": "test",
"ports": [
"py38-pytest"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py38-torchtext",
"py38-torchvision",
"py38-torchaudio"
]
},
{
"type": "run",
"ports": [
"py38-sentence-transformers",
"py38-fairseq",
"py38-pytorch-lightning",
"py38-transformers",
"py38-allennlp",
"py38-kraken"
]
},
{
"type": "test",
"ports": [
"py38-huggingface_hub"
]
}
]
},
{
"name": "highlight",
"portdir": "textproc/highlight",
"version": "4.18",
"license": "GPL-3",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "http://andre-simon.de/doku/highlight/en/highlight.php",
"description": "converts source code to formatted text with syntax highlighting",
"long_description": "converts source code to formatted text with syntax highlighting",
"active": true,
"categories": [
"devel",
"textproc"
],
"maintainers": [
{
"name": "i0ntempest",
"github": "i0ntempest",
"ports_count": 224
}
],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"cctools",
"pkgconfig",
"boost187",
"clang-20"
]
},
{
"type": "lib",
"ports": [
"lua"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"stog"
]
}
]
},
{
"name": "py313-onnx",
"portdir": "python/py-onnx",
"version": "1.19.1",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://onnx.ai/",
"description": "Open Neural Network Exchange",
"long_description": "Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py313-build",
"py313-installer",
"py313-setuptools",
"py313-wheel",
"clang-20",
"cmake",
"pybind11"
]
},
{
"type": "lib",
"ports": [
"python313",
"py313-typing_extensions",
"py313-numpy",
"py313-protobuf3"
]
},
{
"type": "run",
"ports": [
"py313-ml_dtypes"
]
},
{
"type": "test",
"ports": [
"py313-pytest",
"py313-tabulate",
"py313-nbval"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py-onnx"
]
},
{
"type": "run",
"ports": [
"py313-pytorch"
]
}
]
},
{
"name": "py312-onnx",
"portdir": "python/py-onnx",
"version": "1.19.1",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://onnx.ai/",
"description": "Open Neural Network Exchange",
"long_description": "Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py312-installer",
"py312-setuptools",
"py312-wheel",
"clang-20",
"cmake",
"pybind11",
"py312-build"
]
},
{
"type": "lib",
"ports": [
"python312",
"py312-typing_extensions",
"py312-numpy",
"py312-protobuf3"
]
},
{
"type": "run",
"ports": [
"py312-ml_dtypes"
]
},
{
"type": "test",
"ports": [
"py312-pytest",
"py312-tabulate",
"py312-nbval"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py312-pytorch"
]
}
]
},
{
"name": "py311-onnx",
"portdir": "python/py-onnx",
"version": "1.19.1",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://onnx.ai/",
"description": "Open Neural Network Exchange",
"long_description": "Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py311-installer",
"py311-setuptools",
"py311-wheel",
"clang-20",
"cmake",
"pybind11",
"py311-build"
]
},
{
"type": "lib",
"ports": [
"python311",
"py311-typing_extensions",
"py311-numpy",
"py311-protobuf3"
]
},
{
"type": "run",
"ports": [
"py311-ml_dtypes"
]
},
{
"type": "test",
"ports": [
"py311-pytest",
"py311-tabulate",
"py311-nbval"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py311-pytorch"
]
}
]
},
{
"name": "py310-onnx",
"portdir": "python/py-onnx",
"version": "1.19.1",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://onnx.ai/",
"description": "Open Neural Network Exchange",
"long_description": "Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py310-wheel",
"py310-build",
"py310-installer",
"clang-20",
"cmake",
"pybind11",
"py310-setuptools"
]
},
{
"type": "lib",
"ports": [
"python310",
"py310-typing_extensions",
"py310-numpy",
"py310-protobuf3"
]
},
{
"type": "run",
"ports": [
"py310-ml_dtypes"
]
},
{
"type": "test",
"ports": [
"py310-pytest",
"py310-tabulate",
"py310-nbval"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py310-onnxconverter-common",
"py310-keras2onnx",
"py310-pytorch"
]
}
]
},
{
"name": "py39-onnx",
"portdir": "python/py-onnx",
"version": "1.19.1",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://onnx.ai/",
"description": "Open Neural Network Exchange",
"long_description": "Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py39-wheel",
"py39-build",
"py39-installer",
"clang-20",
"cmake",
"pybind11",
"py39-setuptools"
]
},
{
"type": "lib",
"ports": [
"python39",
"py39-numpy",
"py39-protobuf3",
"py39-typing_extensions"
]
},
{
"type": "run",
"ports": [
"py39-ml_dtypes"
]
},
{
"type": "test",
"ports": [
"py39-nbval",
"py39-pytest",
"py39-tabulate"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py39-keras2onnx",
"py39-onnxconverter-common",
"py39-pytorch"
]
}
]
},
{
"name": "py313-nbval",
"portdir": "python/py-nbval",
"version": "0.11.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/computationalmodelling/nbval",
"description": "A py.test plugin to validate Jupyter notebooks",
"long_description": "The plugin adds functionality to py.test to recognise and collect Jupyter notebooks. The intended purpose of the tests is to determine whether execution of the stored inputs match the stored outputs of the .ipynb file. Whilst also ensuring that the notebooks are running without errors.",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py313-wheel",
"py313-setuptools",
"py313-installer",
"py313-build"
]
},
{
"type": "lib",
"ports": [
"python313"
]
},
{
"type": "run",
"ports": [
"py313-nbformat",
"py313-ipykernel",
"py313-jupyter_client",
"py313-coverage",
"py313-pytest"
]
},
{
"type": "test",
"ports": [
"py313-pytest",
"py313-sympy",
"py313-matplotlib"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py-nbval"
]
},
{
"type": "test",
"ports": [
"py313-onnx"
]
}
]
},
{
"name": "py311-nbval",
"portdir": "python/py-nbval",
"version": "0.11.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/computationalmodelling/nbval",
"description": "A py.test plugin to validate Jupyter notebooks",
"long_description": "The plugin adds functionality to py.test to recognise and collect Jupyter notebooks. The intended purpose of the tests is to determine whether execution of the stored inputs match the stored outputs of the .ipynb file. Whilst also ensuring that the notebooks are running without errors.",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py311-build",
"clang-18",
"py311-wheel",
"py311-setuptools",
"py311-installer"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-nbformat",
"py311-jupyter_client",
"py311-ipykernel",
"py311-coverage",
"py311-pytest"
]
},
{
"type": "test",
"ports": [
"py311-sympy",
"py311-pytest",
"py311-matplotlib"
]
}
],
"depends_on": [
{
"type": "test",
"ports": [
"py311-onnx"
]
}
]
},
{
"name": "py312-nbval",
"portdir": "python/py-nbval",
"version": "0.11.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/computationalmodelling/nbval",
"description": "A py.test plugin to validate Jupyter notebooks",
"long_description": "The plugin adds functionality to py.test to recognise and collect Jupyter notebooks. The intended purpose of the tests is to determine whether execution of the stored inputs match the stored outputs of the .ipynb file. Whilst also ensuring that the notebooks are running without errors.",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py312-build",
"clang-18",
"py312-wheel",
"py312-setuptools",
"py312-installer"
]
},
{
"type": "lib",
"ports": [
"python312"
]
},
{
"type": "run",
"ports": [
"py312-nbformat",
"py312-jupyter_client",
"py312-ipykernel",
"py312-pytest",
"py312-coverage"
]
},
{
"type": "test",
"ports": [
"py312-pytest",
"py312-sympy",
"py312-matplotlib"
]
}
],
"depends_on": [
{
"type": "test",
"ports": [
"py312-onnx"
]
}
]
},
{
"name": "py310-nbval",
"portdir": "python/py-nbval",
"version": "0.11.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/computationalmodelling/nbval",
"description": "A py.test plugin to validate Jupyter notebooks",
"long_description": "The plugin adds functionality to py.test to recognise and collect Jupyter notebooks. The intended purpose of the tests is to determine whether execution of the stored inputs match the stored outputs of the .ipynb file. Whilst also ensuring that the notebooks are running without errors.",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py310-setuptools",
"clang-18",
"py310-installer",
"py310-build",
"py310-wheel"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-nbformat",
"py310-jupyter_client",
"py310-ipykernel",
"py310-coverage",
"py310-pytest"
]
},
{
"type": "test",
"ports": [
"py310-pytest",
"py310-sympy",
"py310-matplotlib"
]
}
],
"depends_on": [
{
"type": "test",
"ports": [
"py310-onnx"
]
}
]
},
{
"name": "py39-nbval",
"portdir": "python/py-nbval",
"version": "0.11.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/computationalmodelling/nbval",
"description": "A py.test plugin to validate Jupyter notebooks",
"long_description": "The plugin adds functionality to py.test to recognise and collect Jupyter notebooks. The intended purpose of the tests is to determine whether execution of the stored inputs match the stored outputs of the .ipynb file. Whilst also ensuring that the notebooks are running without errors.",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py39-setuptools",
"clang-18",
"py39-installer",
"py39-build",
"py39-wheel"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-pytest",
"py39-nbformat",
"py39-jupyter_client",
"py39-ipykernel",
"py39-coverage"
]
},
{
"type": "test",
"ports": [
"py39-matplotlib",
"py39-pytest",
"py39-sympy"
]
}
],
"depends_on": [
{
"type": "test",
"ports": [
"py39-onnx"
]
}
]
},
{
"name": "py-onnx",
"portdir": "python/py-onnx",
"version": "1.19.1",
"license": "Apache-2",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://onnx.ai/",
"description": "Open Neural Network Exchange",
"long_description": "Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-onnx"
]
}
],
"depends_on": []
},
{
"name": "py-nbval",
"portdir": "python/py-nbval",
"version": "0.11.0",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/computationalmodelling/nbval",
"description": "A py.test plugin to validate Jupyter notebooks",
"long_description": "The plugin adds functionality to py.test to recognise and collect Jupyter notebooks. The intended purpose of the tests is to determine whether execution of the stored inputs match the stored outputs of the .ipynb file. Whilst also ensuring that the notebooks are running without errors.",
"active": true,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-nbval"
]
}
],
"depends_on": []
},
{
"name": "py313-ml_dtypes",
"portdir": "python/py-ml_dtypes",
"version": "0.5.3",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/jax-ml/ml_dtypes",
"description": "NumPy dtype extensions used in machine learning",
"long_description": "NumPy dtype extensions used in machine learning",
"active": true,
"categories": [
"devel",
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py313-installer",
"py313-wheel",
"clang-20",
"py313-build",
"py313-setuptools"
]
},
{
"type": "lib",
"ports": [
"python313"
]
},
{
"type": "run",
"ports": [
"py313-numpy"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py-ml_dtypes"
]
},
{
"type": "run",
"ports": [
"py313-onnx"
]
}
]
},
{
"name": "py312-ml_dtypes",
"portdir": "python/py-ml_dtypes",
"version": "0.5.3",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/jax-ml/ml_dtypes",
"description": "NumPy dtype extensions used in machine learning",
"long_description": "NumPy dtype extensions used in machine learning",
"active": true,
"categories": [
"devel",
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py312-installer",
"py312-wheel",
"clang-20",
"py312-build",
"py312-setuptools"
]
},
{
"type": "lib",
"ports": [
"python312"
]
},
{
"type": "run",
"ports": [
"py312-numpy"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py312-onnx"
]
}
]
},
{
"name": "py311-ml_dtypes",
"portdir": "python/py-ml_dtypes",
"version": "0.5.3",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/jax-ml/ml_dtypes",
"description": "NumPy dtype extensions used in machine learning",
"long_description": "NumPy dtype extensions used in machine learning",
"active": true,
"categories": [
"devel",
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py311-installer",
"py311-wheel",
"clang-20",
"py311-build",
"py311-setuptools"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "run",
"ports": [
"py311-numpy"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py311-onnx"
]
}
]
},
{
"name": "py310-ml_dtypes",
"portdir": "python/py-ml_dtypes",
"version": "0.5.3",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/jax-ml/ml_dtypes",
"description": "NumPy dtype extensions used in machine learning",
"long_description": "NumPy dtype extensions used in machine learning",
"active": true,
"categories": [
"devel",
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py310-wheel",
"py310-installer",
"clang-20",
"py310-setuptools",
"py310-build"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "run",
"ports": [
"py310-numpy"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py310-onnx"
]
}
]
},
{
"name": "py39-ml_dtypes",
"portdir": "python/py-ml_dtypes",
"version": "0.5.3",
"license": "Apache-2",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/jax-ml/ml_dtypes",
"description": "NumPy dtype extensions used in machine learning",
"long_description": "NumPy dtype extensions used in machine learning",
"active": true,
"categories": [
"devel",
"python"
],
"maintainers": [],
"variants": [
"universal"
],
"dependencies": [
{
"type": "build",
"ports": [
"py39-wheel",
"py39-installer",
"clang-20",
"py39-setuptools",
"py39-build"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "run",
"ports": [
"py39-numpy"
]
}
],
"depends_on": [
{
"type": "run",
"ports": [
"py39-onnx"
]
}
]
},
{
"name": "py-ml_dtypes",
"portdir": "python/py-ml_dtypes",
"version": "0.5.3",
"license": "Apache-2",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/jax-ml/ml_dtypes",
"description": "NumPy dtype extensions used in machine learning",
"long_description": "NumPy dtype extensions used in machine learning",
"active": true,
"categories": [
"devel",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-ml_dtypes"
]
}
],
"depends_on": []
},
{
"name": "py313-astunparse",
"portdir": "python/py-astunparse",
"version": "1.6.3",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/simonpercivall/astunparse",
"description": "An AST unparser for Python.",
"long_description": "An AST unparser for Python.. This is a factored out version of unparse found in the Python source distribution; under Demo/parser in Python 2 and under Tools/parser in Python 3.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py313-wheel",
"clang-18",
"py313-build",
"py313-installer",
"py313-setuptools"
]
},
{
"type": "lib",
"ports": [
"python313"
]
},
{
"type": "test",
"ports": [
"py313-wheel",
"py313-pytest"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py-astunparse"
]
}
]
},
{
"name": "py312-astunparse",
"portdir": "python/py-astunparse",
"version": "1.6.3",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/simonpercivall/astunparse",
"description": "An AST unparser for Python.",
"long_description": "An AST unparser for Python.. This is a factored out version of unparse found in the Python source distribution; under Demo/parser in Python 2 and under Tools/parser in Python 3.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py312-build",
"py312-installer",
"py312-setuptools",
"py312-wheel"
]
},
{
"type": "lib",
"ports": [
"python312"
]
},
{
"type": "test",
"ports": [
"py312-wheel",
"py312-pytest"
]
}
],
"depends_on": []
},
{
"name": "py311-astunparse",
"portdir": "python/py-astunparse",
"version": "1.6.3",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/simonpercivall/astunparse",
"description": "An AST unparser for Python.",
"long_description": "An AST unparser for Python.. This is a factored out version of unparse found in the Python source distribution; under Demo/parser in Python 2 and under Tools/parser in Python 3.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py311-build",
"py311-installer",
"py311-setuptools",
"py311-wheel"
]
},
{
"type": "lib",
"ports": [
"python311"
]
},
{
"type": "test",
"ports": [
"py311-wheel",
"py311-pytest"
]
}
],
"depends_on": []
},
{
"name": "py310-astunparse",
"portdir": "python/py-astunparse",
"version": "1.6.3",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/simonpercivall/astunparse",
"description": "An AST unparser for Python.",
"long_description": "An AST unparser for Python.. This is a factored out version of unparse found in the Python source distribution; under Demo/parser in Python 2 and under Tools/parser in Python 3.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py310-setuptools",
"py310-wheel",
"py310-build",
"py310-installer"
]
},
{
"type": "lib",
"ports": [
"python310"
]
},
{
"type": "test",
"ports": [
"py310-pytest",
"py310-wheel"
]
}
],
"depends_on": [
{
"type": "lib",
"ports": [
"py310-mdtraj",
"py310-tensorflow"
]
},
{
"type": "run",
"ports": [
"py310-tensorflow-macos"
]
}
]
},
{
"name": "py39-astunparse",
"portdir": "python/py-astunparse",
"version": "1.6.3",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/simonpercivall/astunparse",
"description": "An AST unparser for Python.",
"long_description": "An AST unparser for Python.. This is a factored out version of unparse found in the Python source distribution; under Demo/parser in Python 2 and under Tools/parser in Python 3.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18",
"py39-setuptools",
"py39-wheel",
"py39-build",
"py39-installer"
]
},
{
"type": "lib",
"ports": [
"python39"
]
},
{
"type": "test",
"ports": [
"py39-pytest",
"py39-wheel"
]
}
],
"depends_on": [
{
"type": "build",
"ports": [
"py39-pytorch"
]
},
{
"type": "lib",
"ports": [
"py39-mdtraj",
"py39-tensorflow"
]
},
{
"type": "run",
"ports": [
"py39-tensorflow-macos"
]
}
]
},
{
"name": "py-astunparse",
"portdir": "python/py-astunparse",
"version": "1.6.3",
"license": "BSD",
"platforms": "any",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/simonpercivall/astunparse",
"description": "An AST unparser for Python.",
"long_description": "An AST unparser for Python.. This is a factored out version of unparse found in the Python source distribution; under Demo/parser in Python 2 and under Tools/parser in Python 3.",
"active": true,
"categories": [
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-18"
]
},
{
"type": "lib",
"ports": [
"py313-astunparse"
]
}
],
"depends_on": []
},
{
"name": "py38-nbval",
"portdir": "python/py-nbval",
"version": "0.11.0",
"license": "BSD",
"platforms": "{darwin any}",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/computationalmodelling/nbval",
"description": "A py.test plugin to validate Jupyter notebooks",
"long_description": "The plugin adds functionality to py.test to recognise and collect Jupyter notebooks. The intended purpose of the tests is to determine whether execution of the stored inputs match the stored outputs of the .ipynb file. Whilst also ensuring that the notebooks are running without errors.",
"active": false,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"py38-setuptools",
"clang-16",
"py38-installer",
"py38-build",
"py38-wheel"
]
},
{
"type": "lib",
"ports": [
"python38"
]
},
{
"type": "run",
"ports": [
"py38-pytest",
"py38-nbformat",
"py38-jupyter_client",
"py38-ipykernel",
"py38-coverage"
]
},
{
"type": "test",
"ports": [
"py38-matplotlib",
"py38-pytest",
"py38-sympy"
]
}
],
"depends_on": [
{
"type": "test",
"ports": [
"py38-onnx"
]
}
]
},
{
"name": "py35-nbval",
"portdir": "python/py-nbval",
"version": "0.9.6",
"license": "BSD",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/computationalmodelling/nbval",
"description": "A py.test plugin to validate Jupyter notebooks",
"long_description": "The plugin adds functionality to py.test to recognise and collect Jupyter notebooks. The intended purpose of the tests is to determine whether execution of the stored inputs match the stored outputs of the .ipynb file. Whilst also ensuring that the notebooks are running without errors.",
"active": false,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-9.0",
"py35-setuptools"
]
},
{
"type": "lib",
"ports": [
"python35"
]
},
{
"type": "run",
"ports": [
"py35-jupyter_client",
"py35-nbformat",
"py35-pytest",
"py35-six",
"py35-coverage",
"py35-ipykernel"
]
},
{
"type": "test",
"ports": [
"py35-matplotlib",
"py35-pytest-cov",
"py35-sympy"
]
}
],
"depends_on": []
},
{
"name": "py27-nbval",
"portdir": "python/py-nbval",
"version": "0.9.6",
"license": "BSD",
"platforms": "darwin",
"epoch": 0,
"replaced_by": null,
"homepage": "https://github.com/computationalmodelling/nbval",
"description": "A py.test plugin to validate Jupyter notebooks",
"long_description": "The plugin adds functionality to py.test to recognise and collect Jupyter notebooks. The intended purpose of the tests is to determine whether execution of the stored inputs match the stored outputs of the .ipynb file. Whilst also ensuring that the notebooks are running without errors.",
"active": false,
"categories": [
"science",
"python"
],
"maintainers": [],
"variants": [],
"dependencies": [
{
"type": "build",
"ports": [
"clang-9.0",
"py27-setuptools"
]
},
{
"type": "lib",
"ports": [
"python27"
]
},
{
"type": "run",
"ports": [
"py27-jupyter_client",
"py27-nbformat",
"py27-pytest",
"py27-six",
"py27-coverage",
"py27-ipykernel"
]
},
{
"type": "test",
"ports": [
"py27-matplotlib",
"py27-pytest-cov",
"py27-sympy"
]
}
],
"depends_on": []
}
]
}