GET /api/v1/ports/?format=api&ordering=-updated_at&page=36
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "count": 49655,
    "next": "https://ports.macports.org/api/v1/ports/?format=api&ordering=-updated_at&page=37",
    "previous": "https://ports.macports.org/api/v1/ports/?format=api&ordering=-updated_at&page=35",
    "results": [
        {
            "name": "py35-pyperclip",
            "portdir": "python/py-pyperclip",
            "version": "1.8.2",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/asweigart/pyperclip",
            "description": "A cross-platform clipboard module for Python",
            "long_description": "A cross-platform clipboard module for Python. It currently handles only plain text.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [
                {
                    "name": "petr",
                    "github": "petrrr",
                    "ports_count": 589
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-9.0",
                        "py35-setuptools"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python35"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py27-pyperclip",
            "portdir": "python/py-pyperclip",
            "version": "1.8.2",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/asweigart/pyperclip",
            "description": "A cross-platform clipboard module for Python",
            "long_description": "A cross-platform clipboard module for Python. It currently handles only plain text.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [
                {
                    "name": "petr",
                    "github": "petrrr",
                    "ports_count": 589
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-9.0",
                        "py27-setuptools"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python27"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py38-pyperclip",
            "portdir": "python/py-pyperclip",
            "version": "1.9.0",
            "license": "BSD",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/asweigart/pyperclip",
            "description": "A cross-platform clipboard module for Python",
            "long_description": "A cross-platform clipboard module for Python. It currently handles only plain text.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [
                {
                    "name": "petr",
                    "github": "petrrr",
                    "ports_count": 589
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py38-build",
                        "py38-setuptools",
                        "py38-wheel",
                        "py38-installer",
                        "clang-17"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python38"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py38-pytest"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "lib",
                    "ports": [
                        "py38-mitmproxy"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py38-cmd2"
                    ]
                }
            ]
        },
        {
            "name": "py310-transformers",
            "portdir": "python/py-transformers",
            "version": "4.21.2",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://huggingface.co/transformers/",
            "description": "State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch",
            "long_description": "Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation, etc in 100+ languages. Its aim is to make cutting-edge NLP easier to use for everyone.",
            "active": true,
            "categories": [
                "textproc",
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py310-setuptools",
                        "py310-wheel",
                        "py310-build",
                        "py310-installer",
                        "clang-18"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python310"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py310-fastprogress",
                        "py310-filelock",
                        "py310-importlib-metadata",
                        "py310-pandas",
                        "py310-cookiecutter",
                        "py310-matplotlib",
                        "py310-tqdm",
                        "py310-sphinx",
                        "py310-scikit-learn",
                        "py310-absl",
                        "py310-protobuf3",
                        "py310-parameterized",
                        "py310-h5py",
                        "py310-pydantic",
                        "py310-psutil",
                        "py310-soundfile",
                        "py310-nltk",
                        "py310-recommonmark",
                        "py310-fastapi",
                        "py310-starlette",
                        "py310-tensorflow-macos",
                        "py310-uvicorn",
                        "py310-pytorch",
                        "py310-tensorflow-datasets",
                        "py310-fire",
                        "py310-seqeval",
                        "py310-timeout-decorator",
                        "py310-unidic-lite",
                        "py310-faiss",
                        "py310-conllu",
                        "py310-onnxconverter-common",
                        "py310-fugashi",
                        "py310-sacremoses",
                        "py310-tokenizers",
                        "py310-elasticsearch",
                        "py310-huggingface_hub",
                        "py310-pytorch-lightning",
                        "py310-unidic",
                        "py310-tensorboardX",
                        "py310-sacrebleu",
                        "py310-keras2onnx",
                        "py310-datasets",
                        "py310-torchaudio",
                        "py310-torchtext",
                        "py310-torchvision",
                        "py310-fairseq",
                        "py310-requests",
                        "py310-regex",
                        "py310-packaging",
                        "py310-numpy",
                        "py310-Pillow"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py310-pytest",
                        "py310-pytest-xdist",
                        "py310-pytest-sugar",
                        "py310-huggingface_hub"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "lib",
                    "ports": [
                        "py-transformers"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py310-allennlp",
                        "py310-sentence-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py310-torchvision",
            "portdir": "python/py-torchvision",
            "version": "0.15.2",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/vision",
            "description": "PyTorch datasets, transforms and models specific to computer vision",
            "long_description": "The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.",
            "active": true,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py310-wheel",
                        "py310-build",
                        "py310-installer",
                        "clang-20",
                        "py310-setuptools"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "zmq",
                        "python310",
                        "py310-Pillow",
                        "py310-pytorch"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py310-pytest"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "lib",
                    "ports": [
                        "py-torchvision"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py310-allennlp",
                        "py310-transformers",
                        "py310-kraken"
                    ]
                }
            ]
        },
        {
            "name": "py-transformers",
            "portdir": "python/py-transformers",
            "version": "4.21.2",
            "license": "Apache-2",
            "platforms": "any",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://huggingface.co/transformers/",
            "description": "State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch",
            "long_description": "Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation, etc in 100+ languages. Its aim is to make cutting-edge NLP easier to use for everyone.",
            "active": true,
            "categories": [
                "textproc",
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-18"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py310-transformers"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py-torchvision",
            "portdir": "python/py-torchvision",
            "version": "0.15.2",
            "license": "BSD",
            "platforms": "any",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/vision",
            "description": "PyTorch datasets, transforms and models specific to computer vision",
            "long_description": "The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.",
            "active": true,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-18"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py310-torchvision"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py310-torchaudio",
            "portdir": "python/py-torchaudio",
            "version": "0.12.0",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/audio",
            "description": "Data manipulation and transformation for audio signal processing, powered by PyTorch",
            "long_description": "The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.",
            "active": true,
            "categories": [
                "audio",
                "python"
            ],
            "maintainers": [],
            "variants": [
                "universal"
            ],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "cmake",
                        "clang-18",
                        "py310-installer",
                        "py310-build",
                        "py310-wheel",
                        "py310-setuptools",
                        "ninja"
                    ]
                },
                {
                    "type": "fetch",
                    "ports": [
                        "git"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "sox",
                        "py310-dill",
                        "python310",
                        "ffmpeg",
                        "libomp",
                        "zmq",
                        "py310-pytorch"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py310-pytest"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "lib",
                    "ports": [
                        "py-torchaudio"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py310-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py310-torchtext",
            "portdir": "python/py-torchtext",
            "version": "0.13.1",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/text",
            "description": "PyTorch data loaders and abstractions for text and NLP",
            "long_description": "PyTorch data loaders and abstractions for text and NLP",
            "active": true,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "ninja",
                        "clang-20",
                        "py310-installer",
                        "py310-build",
                        "py310-wheel",
                        "py310-setuptools",
                        "cmake"
                    ]
                },
                {
                    "type": "fetch",
                    "ports": [
                        "git"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py310-spaCy-models",
                        "py310-spaCy",
                        "py310-pytorch",
                        "py310-nltk",
                        "python310",
                        "zmq"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "lib",
                    "ports": [
                        "py-torchtext"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py310-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py-torchaudio",
            "portdir": "python/py-torchaudio",
            "version": "0.12.0",
            "license": "BSD",
            "platforms": "any",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/audio",
            "description": "Data manipulation and transformation for audio signal processing, powered by PyTorch",
            "long_description": "The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.",
            "active": true,
            "categories": [
                "audio",
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-18"
                    ]
                },
                {
                    "type": "fetch",
                    "ports": [
                        "git"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py310-torchaudio"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py-torchtext",
            "portdir": "python/py-torchtext",
            "version": "0.13.1",
            "license": "BSD",
            "platforms": "any",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/text",
            "description": "PyTorch data loaders and abstractions for text and NLP",
            "long_description": "PyTorch data loaders and abstractions for text and NLP",
            "active": true,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-18"
                    ]
                },
                {
                    "type": "fetch",
                    "ports": [
                        "git"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py310-torchtext"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py310-sentence-transformers",
            "portdir": "python/py-sentence-transformers",
            "version": "2.0.0",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/UKPLab/sentence-transformers",
            "description": "Sentence Embeddings using BERT / RoBERTa / XLM-R",
            "long_description": "This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity. We provide an increasing number of state-of-the-art pretrained models for more than 100 languages, fine-tuned for various use-cases. Further, this framework allows an easy fine-tuning of custom embeddings models, to achieve maximal performance on your specific task.",
            "active": true,
            "categories": [
                "textproc",
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py310-setuptools",
                        "py310-wheel",
                        "py310-build",
                        "py310-installer",
                        "clang-18"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python310"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py310-pytorch",
                        "py310-sentencepiece",
                        "py310-transformers",
                        "py310-numpy",
                        "py310-scipy",
                        "py310-tqdm",
                        "py310-scikit-learn",
                        "py310-nltk"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py310-pytest"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "lib",
                    "ports": [
                        "py-sentence-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py-sentence-transformers",
            "portdir": "python/py-sentence-transformers",
            "version": "2.0.0",
            "license": "Apache-2",
            "platforms": "any",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/UKPLab/sentence-transformers",
            "description": "Sentence Embeddings using BERT / RoBERTa / XLM-R",
            "long_description": "This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity. We provide an increasing number of state-of-the-art pretrained models for more than 100 languages, fine-tuned for various use-cases. Further, this framework allows an easy fine-tuning of custom embeddings models, to achieve maximal performance on your specific task.",
            "active": true,
            "categories": [
                "textproc",
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-18"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py310-sentence-transformers"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py310-pytorch-lightning",
            "portdir": "python/py-pytorch-lightning",
            "version": "1.6.5",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/PyTorchLightning/pytorch-lightning",
            "description": "The lightweight PyTorch wrapper for high-performance AI research.",
            "long_description": "Lightning disentangles PyTorch code to decouple the science from the engineering.",
            "active": true,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py310-setuptools",
                        "clang-18",
                        "py310-installer",
                        "py310-build",
                        "py310-wheel"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python310"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py310-tensorboard",
                        "py310-pytorch",
                        "py310-fsspec",
                        "py310-tqdm",
                        "py310-yaml",
                        "py310-future",
                        "py310-numpy"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "lib",
                    "ports": [
                        "py-pytorch-lightning"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py310-transformers",
                        "py310-kraken"
                    ]
                }
            ]
        },
        {
            "name": "py-pytorch-lightning",
            "portdir": "python/py-pytorch-lightning",
            "version": "1.6.5",
            "license": "Apache-2",
            "platforms": "any",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/PyTorchLightning/pytorch-lightning",
            "description": "The lightweight PyTorch wrapper for high-performance AI research.",
            "long_description": "Lightning disentangles PyTorch code to decouple the science from the engineering.",
            "active": true,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-18"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py310-pytorch-lightning"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py310-fairseq",
            "portdir": "python/py-fairseq",
            "version": "0.12.2",
            "license": "MIT",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/fairseq",
            "description": "Facebook AI Research Sequence-to-Sequence Toolkit written in Python.",
            "long_description": "Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.",
            "active": true,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [
                "universal"
            ],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py310-wheel",
                        "py310-installer",
                        "clang-18",
                        "py310-setuptools",
                        "py310-build"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python310",
                        "py310-setuptools"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py310-hydra-core",
                        "py310-sacrebleu",
                        "py310-omegaconf",
                        "py310-cython",
                        "py310-regex",
                        "py310-numpy",
                        "py310-cffi",
                        "py310-tqdm",
                        "py310-pytorch"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py310-pytest"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "lib",
                    "ports": [
                        "py-fairseq"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py310-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py-fairseq",
            "portdir": "python/py-fairseq",
            "version": "0.12.2",
            "license": "MIT",
            "platforms": "any",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/fairseq",
            "description": "Facebook AI Research Sequence-to-Sequence Toolkit written in Python.",
            "long_description": "Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.",
            "active": true,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-18"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py310-fairseq"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-powerpc-netbsd",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for powerpc-netbsd",
            "long_description": "This Pascal crosscompiler produces powerpc executables, which run natively on powerpc-netbsd systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Ppowerpc -Tnetbsd FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18",
                        "powerpc-netbsd-binutils"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-powerpc-linux",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for powerpc-linux",
            "long_description": "This Pascal crosscompiler produces powerpc executables, which run natively on powerpc-linux systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Ppowerpc -Tlinux FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18",
                        "powerpc-linux-binutils"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-x86_64-openbsd",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for x86_64-openbsd",
            "long_description": "This Pascal crosscompiler produces x86_64 executables, which run natively on x86_64-openbsd systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Px86_64 -Topenbsd FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18",
                        "x86_64-openbsd-binutils"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-x86_64-netbsd",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for x86_64-netbsd",
            "long_description": "This Pascal crosscompiler produces x86_64 executables, which run natively on x86_64-netbsd systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Px86_64 -Tnetbsd FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18",
                        "x86_64-netbsd-binutils"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-x86_64-freebsd",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for x86_64-freebsd",
            "long_description": "This Pascal crosscompiler produces x86_64 executables, which run natively on x86_64-freebsd systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Px86_64 -Tfreebsd FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18",
                        "x86_64-freebsd-binutils"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-x86_64-dragonfly",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for x86_64-dragonfly",
            "long_description": "This Pascal crosscompiler produces x86_64 executables, which run natively on x86_64-dragonfly systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Px86_64 -Tdragonfly FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18",
                        "x86_64-dragonfly-binutils"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-x86_64-linux",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for x86_64-linux",
            "long_description": "This Pascal crosscompiler produces x86_64 executables, which run natively on x86_64-linux systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Px86_64 -Tlinux FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18",
                        "x86_64-linux-binutils"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-x86_64-win64",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for x86_64-win64",
            "long_description": "This Pascal crosscompiler produces x86_64 executables, which run natively on x86_64-win64 systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Px86_64 -Twin64 FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-x86-64-win64",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": "fpc-cross-x86_64-win64",
            "homepage": "https://www.freepascal.org",
            "description": "Obsolete port, replaced by fpc-cross-x86_64-win64",
            "long_description": "This port has been replaced by fpc-cross-x86_64-win64.",
            "active": true,
            "categories": [
                "lang",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-18"
                    ]
                },
                {
                    "type": "extract",
                    "ports": [
                        null
                    ]
                },
                {
                    "type": "fetch",
                    "ports": [
                        null
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        null
                    ]
                },
                {
                    "type": "patch",
                    "ports": [
                        null
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        null
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        null
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-i386-wince",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for i386-wince",
            "long_description": "This Pascal crosscompiler produces i386 executables, which run natively on i386-wince systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Pi386 -Twince FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-i386-win32",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for i386-win32",
            "long_description": "This Pascal crosscompiler produces i386 executables, which run natively on i386-win32 systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Pi386 -Twin32 FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-i386-nativent",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for i386-nativent",
            "long_description": "This Pascal crosscompiler produces i386 executables, which run natively on i386-nativent systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Pi386 -Tnativent FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross-arm-wince",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FPC cross-compiler for arm-wince",
            "long_description": "This Pascal crosscompiler produces arm executables, which run natively on arm-wince systems. \n Get help with: \n fpc -h \n Compile and link a Pascal file with: \n \n fpc -Parm -Twince FILENAME",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "fpc-cross",
                        "clang-18"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc-cross",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "FreePascal common cross-compiler binaries",
            "long_description": "Crosscompilers serving as starting points for specific operating system targets. OS runtime libraries are not yet ready.",
            "active": true,
            "categories": [
                "lang",
                "cross",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "clang-18"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "build",
                    "ports": [
                        "fpc-cross-arm-wince",
                        "fpc-cross-i386-nativent",
                        "fpc-cross-i386-win32",
                        "fpc-cross-i386-wince",
                        "fpc-cross-x86_64-win64",
                        "fpc-cross-x86_64-linux",
                        "fpc-cross-x86_64-dragonfly",
                        "fpc-cross-x86_64-freebsd",
                        "fpc-cross-x86_64-netbsd",
                        "fpc-cross-x86_64-openbsd",
                        "fpc-cross-powerpc-linux",
                        "fpc-cross-powerpc-netbsd"
                    ]
                }
            ]
        },
        {
            "name": "chmcmd-fpc",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "The FPC Pascal htmlhelp (CHM) compiler",
            "long_description": "chmcmd is a cross-platform utility to generate compressed HTML (.chm) documentation, written in Free Pascal.",
            "active": true,
            "categories": [
                "lang",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "fpc",
                        "clang-18"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "fpc",
            "portdir": "lang/fpc",
            "version": "3.2.2",
            "license": "(GPL-2 or LGPL-2)",
            "platforms": "macosx",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://www.freepascal.org",
            "description": "Free Pascal, an open source Pascal and Object Pascal compiler.",
            "long_description": "Free Pascal is a 32, 64 and 16 bit professional Pascal compiler. It can target many processor architectures: Intel x86 (including 8086), AMD64/x86-64, PowerPC, PowerPC64, SPARC, ARM, AArch64, MIPS and the JVM. Supported operating systems include Linux, FreeBSD, Mac OS X/iOS/iPhoneSimulator/Darwin, Win32, Win64, WinCE and Android.",
            "active": true,
            "categories": [
                "lang",
                "pascal"
            ],
            "maintainers": [
                {
                    "name": "karl-michael.schindler",
                    "github": "kamischi",
                    "ports_count": 55
                },
                {
                    "name": "vital.had",
                    "github": "barracuda156",
                    "ports_count": 2571
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-18"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "build",
                    "ports": [
                        "pascal-p5",
                        "chmcmd-fpc",
                        "fpc-cross",
                        "fpc-cross-arm-wince",
                        "fpc-cross-i386-nativent",
                        "fpc-cross-i386-win32",
                        "fpc-cross-i386-wince",
                        "fpc-cross-x86_64-win64",
                        "fpc-cross-x86_64-linux",
                        "fpc-cross-x86_64-dragonfly",
                        "fpc-cross-x86_64-freebsd",
                        "fpc-cross-x86_64-netbsd",
                        "fpc-cross-x86_64-openbsd",
                        "fpc-cross-powerpc-linux",
                        "fpc-cross-powerpc-netbsd"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "lazarus"
                    ]
                }
            ]
        },
        {
            "name": "google-cloud-sdk",
            "portdir": "devel/google-cloud-sdk",
            "version": "547.0.0",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://cloud.google.com/sdk/",
            "description": "Command-line interface for Google Cloud Platform products and services",
            "long_description": "Google Cloud SDK is a set of tools for Google Cloud Platform. It contains gcloud, gsutil, and bq command-line tools, which you can use to access Compute Engine, Cloud Storage, BigQuery, and other products and services from the command-line. You can run these tools interactively or in your automated scripts.",
            "active": true,
            "categories": [
                "devel",
                "python"
            ],
            "maintainers": [
                {
                    "name": "breun",
                    "github": "breun",
                    "ports_count": 95
                }
            ],
            "variants": [
                "alpha",
                "anthos_auth",
                "app_engine_go",
                "app_engine_java",
                "app_engine_python",
                "app_engine_python_extras",
                "appctl",
                "beta",
                "bigtable",
                "cbt",
                "cloud_datastore_emulator",
                "cloud_firestore_emulator",
                "cloud_run_proxy",
                "cloud_sql_proxy",
                "config_connector",
                "docker_credential_gcr",
                "enterprise_certificate_proxy",
                "gke_gcloud_auth_plugin",
                "istioctl",
                "kpt",
                "kubectl",
                "kubectl_oidc",
                "kustomize",
                "local_extract",
                "log_streaming",
                "managed_flink_client",
                "minikube",
                "nomos",
                "package_go_module",
                "pkg",
                "pubsub_emulator",
                "spanner_cli",
                "skaffold",
                "terraform_tools"
            ],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py313-installer",
                        "clang-18",
                        "py313-build",
                        "py313-setuptools",
                        "py313-wheel"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python313"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py313-pytest"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py39-transformers",
            "portdir": "python/py-transformers",
            "version": "4.21.2",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://huggingface.co/transformers/",
            "description": "State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch",
            "long_description": "Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation, etc in 100+ languages. Its aim is to make cutting-edge NLP easier to use for everyone.",
            "active": false,
            "categories": [
                "textproc",
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py39-setuptools",
                        "py39-wheel",
                        "py39-build",
                        "py39-installer",
                        "clang-18"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python39"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py39-datasets",
                        "py39-elasticsearch",
                        "py39-fairseq",
                        "py39-fastapi",
                        "py39-fastprogress",
                        "py39-filelock",
                        "py39-fire",
                        "py39-fugashi",
                        "py39-h5py",
                        "py39-importlib-metadata",
                        "py39-keras2onnx",
                        "py39-matplotlib",
                        "py39-nltk",
                        "py39-numpy",
                        "py39-onnxconverter-common",
                        "py39-packaging",
                        "py39-pandas",
                        "py39-parameterized",
                        "py39-protobuf3",
                        "py39-psutil",
                        "py39-pydantic",
                        "py39-pytorch",
                        "py39-pytorch-lightning",
                        "py39-recommonmark",
                        "py39-regex",
                        "py39-requests",
                        "py39-sacrebleu",
                        "py39-sacremoses",
                        "py39-scikit-learn",
                        "py39-seqeval",
                        "py39-soundfile",
                        "py39-sphinx",
                        "py39-starlette",
                        "py39-tensorboardX",
                        "py39-tensorflow-datasets",
                        "py39-timeout-decorator",
                        "py39-tokenizers",
                        "py39-torchaudio",
                        "py39-torchtext",
                        "py39-torchvision",
                        "py39-unidic",
                        "py39-unidic-lite",
                        "py39-uvicorn",
                        "py39-huggingface_hub",
                        "py39-tensorflow-macos",
                        "py39-tqdm",
                        "py39-faiss",
                        "py39-Pillow",
                        "py39-absl",
                        "py39-conllu",
                        "py39-cookiecutter"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py39-pytest",
                        "py39-pytest-sugar",
                        "py39-pytest-xdist",
                        "py39-huggingface_hub"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "run",
                    "ports": [
                        "py39-allennlp",
                        "py39-sentence-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py38-transformers",
            "portdir": "python/py-transformers",
            "version": "4.21.2",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://huggingface.co/transformers/",
            "description": "State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch",
            "long_description": "🤗 Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation, etc in 100+ languages. Its aim is to make cutting-edge NLP easier to use for everyone.",
            "active": false,
            "categories": [
                "textproc",
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py38-setuptools",
                        "py38-wheel",
                        "py38-build",
                        "clang-14",
                        "py38-installer"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python38"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py38-cookiecutter",
                        "py38-datasets",
                        "py38-elasticsearch",
                        "py38-fairseq",
                        "py38-fastapi",
                        "py38-fastprogress",
                        "py38-filelock",
                        "py38-fire",
                        "py38-flake8",
                        "py38-fugashi",
                        "py38-h5py",
                        "py38-importlib-metadata",
                        "py38-isort",
                        "py38-keras2onnx",
                        "py38-matplotlib",
                        "py38-nltk",
                        "py38-numpy",
                        "py38-onnxconverter-common",
                        "py38-packaging",
                        "py38-pandas",
                        "py38-parameterized",
                        "py38-protobuf3",
                        "py38-psutil",
                        "py38-pydantic",
                        "py38-pytorch",
                        "py38-pytorch-lightning",
                        "py38-recommonmark",
                        "py38-regex",
                        "py38-requests",
                        "py38-sacrebleu",
                        "py38-sacremoses",
                        "py38-scikit-learn",
                        "py38-seqeval",
                        "py38-soundfile",
                        "py38-sphinx",
                        "py38-starlette",
                        "py38-tensorboardX",
                        "py38-tensorflow-datasets",
                        "py38-timeout-decorator",
                        "py38-tokenizers",
                        "py38-torchaudio",
                        "py38-torchvision",
                        "py38-tqdm",
                        "py38-unidic",
                        "py38-unidic-lite",
                        "py38-uvicorn",
                        "py38-huggingface_hub",
                        "py38-tensorflow-macos",
                        "py38-torchtext",
                        "py38-faiss",
                        "py38-Pillow",
                        "py38-absl",
                        "py38-black",
                        "py38-conllu"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py38-pytest",
                        "py38-pytest-sugar",
                        "py38-pytest-xdist",
                        "py38-huggingface_hub"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "run",
                    "ports": [
                        "py38-allennlp",
                        "py38-sentence-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py39-torchtext",
            "portdir": "python/py-torchtext",
            "version": "0.13.1",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/text",
            "description": "PyTorch data loaders and abstractions for text and NLP",
            "long_description": "PyTorch data loaders and abstractions for text and NLP",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "ninja",
                        "clang-17",
                        "py39-installer",
                        "py39-build",
                        "py39-wheel",
                        "py39-setuptools",
                        "cmake"
                    ]
                },
                {
                    "type": "fetch",
                    "ports": [
                        "git"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py39-spaCy-models",
                        "py39-spaCy",
                        "py39-pytorch",
                        "py39-nltk",
                        "python39",
                        "zmq"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "run",
                    "ports": [
                        "py39-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py38-torchtext",
            "portdir": "python/py-torchtext",
            "version": "0.13.1",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/text",
            "description": "PyTorch data loaders and abstractions for text and NLP",
            "long_description": "PyTorch data loaders and abstractions for text and NLP",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "cmake",
                        "ninja",
                        "py38-setuptools",
                        "clang-15"
                    ]
                },
                {
                    "type": "fetch",
                    "ports": [
                        "git"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "zmq",
                        "py38-spaCy-models",
                        "python38",
                        "py38-nltk",
                        "py38-pytorch",
                        "py38-spaCy"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "run",
                    "ports": [
                        "py38-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py37-torchtext",
            "portdir": "python/py-torchtext",
            "version": "0.8.1",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/text",
            "description": "PyTorch data loaders and abstractions for text and NLP",
            "long_description": "PyTorch data loaders and abstractions for text and NLP",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [
                {
                    "name": "jonesc",
                    "github": "cjones051073",
                    "ports_count": 218
                }
            ],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "cmake",
                        "py37-setuptools",
                        "clang-9.0",
                        "ninja"
                    ]
                },
                {
                    "type": "fetch",
                    "ports": [
                        "git"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py37-spaCy-models",
                        "py37-spaCy",
                        "py37-pytorch",
                        "py37-nltk",
                        "python37"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py37-torchvision",
            "portdir": "python/py-torchvision",
            "version": "0.13.0",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/vision",
            "description": "PyTorch datasets, transforms and models specific to computer vision",
            "long_description": "The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py37-setuptools",
                        "py37-wheel",
                        "clang-14"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py37-pytorch",
                        "zmq",
                        "python37",
                        "py37-Pillow"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py37-pytest"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py39-torchvision",
            "portdir": "python/py-torchvision",
            "version": "0.15.2",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/vision",
            "description": "PyTorch datasets, transforms and models specific to computer vision",
            "long_description": "The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py39-wheel",
                        "py39-build",
                        "py39-installer",
                        "clang-17",
                        "py39-setuptools"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "zmq",
                        "python39",
                        "py39-Pillow",
                        "py39-pytorch"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py39-pytest"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "run",
                    "ports": [
                        "py39-allennlp",
                        "py39-kraken",
                        "py39-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py38-torchvision",
            "portdir": "python/py-torchvision",
            "version": "0.15.2",
            "license": "BSD",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/vision",
            "description": "PyTorch datasets, transforms and models specific to computer vision",
            "long_description": "The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py38-setuptools",
                        "py38-wheel",
                        "clang-16"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py38-pytorch",
                        "zmq",
                        "python38",
                        "py38-Pillow"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py38-pytest"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "run",
                    "ports": [
                        "py38-allennlp",
                        "py38-kraken",
                        "py38-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py38-fairseq",
            "portdir": "python/py-fairseq",
            "version": "0.12.2",
            "license": "MIT",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/fairseq",
            "description": "Facebook AI Research Sequence-to-Sequence Toolkit written in Python.",
            "long_description": "Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [
                "universal"
            ],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-15"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py38-setuptools",
                        "python38"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py38-hydra-core",
                        "py38-numpy",
                        "py38-pytorch",
                        "py38-regex",
                        "py38-sacrebleu",
                        "py38-tqdm",
                        "py38-omegaconf",
                        "py38-cffi",
                        "py38-cython"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py38-pytest"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "run",
                    "ports": [
                        "py38-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py39-fairseq",
            "portdir": "python/py-fairseq",
            "version": "0.12.2",
            "license": "MIT",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/fairseq",
            "description": "Facebook AI Research Sequence-to-Sequence Toolkit written in Python.",
            "long_description": "Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [
                "universal"
            ],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py39-wheel",
                        "py39-installer",
                        "clang-17",
                        "py39-setuptools",
                        "py39-build"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python39",
                        "py39-setuptools"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py39-sacrebleu",
                        "py39-tqdm",
                        "py39-regex",
                        "py39-cffi",
                        "py39-cython",
                        "py39-hydra-core",
                        "py39-numpy",
                        "py39-omegaconf",
                        "py39-pytorch"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py39-pytest"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "run",
                    "ports": [
                        "py39-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py37-fairseq",
            "portdir": "python/py-fairseq",
            "version": "0.12.2",
            "license": "MIT",
            "platforms": "darwin",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/pytorch/fairseq",
            "description": "Facebook AI Research Sequence-to-Sequence Toolkit written in Python.",
            "long_description": "Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [
                "universal"
            ],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "clang-14"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "py37-setuptools",
                        "python37"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py37-hydra-core",
                        "py37-numpy",
                        "py37-pytorch",
                        "py37-regex",
                        "py37-sacrebleu",
                        "py37-tqdm",
                        "py37-omegaconf",
                        "py37-cffi",
                        "py37-cython"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py37-pytest"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py38-sentence-transformers",
            "portdir": "python/py-sentence-transformers",
            "version": "2.0.0",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/UKPLab/sentence-transformers",
            "description": "Sentence Embeddings using BERT / RoBERTa / XLM-R",
            "long_description": "This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity. We provide an increasing number of state-of-the-art pretrained models for more than 100 languages, fine-tuned for various use-cases. Further, this framework allows an easy fine-tuning of custom embeddings models, to achieve maximal performance on your specific task.",
            "active": false,
            "categories": [
                "textproc",
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py38-setuptools",
                        "clang-14"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python38"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py38-pytorch",
                        "py38-scikit-learn",
                        "py38-scipy",
                        "py38-tqdm",
                        "py38-transformers",
                        "py38-sentencepiece",
                        "py38-nltk",
                        "py38-numpy"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py38-pytest"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py39-sentence-transformers",
            "portdir": "python/py-sentence-transformers",
            "version": "2.0.0",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/UKPLab/sentence-transformers",
            "description": "Sentence Embeddings using BERT / RoBERTa / XLM-R",
            "long_description": "This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity. We provide an increasing number of state-of-the-art pretrained models for more than 100 languages, fine-tuned for various use-cases. Further, this framework allows an easy fine-tuning of custom embeddings models, to achieve maximal performance on your specific task.",
            "active": false,
            "categories": [
                "textproc",
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py39-setuptools",
                        "py39-wheel",
                        "py39-build",
                        "py39-installer",
                        "clang-17"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python39"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py39-sentencepiece",
                        "py39-transformers",
                        "py39-tqdm",
                        "py39-nltk",
                        "py39-numpy",
                        "py39-pytorch",
                        "py39-scikit-learn",
                        "py39-scipy"
                    ]
                },
                {
                    "type": "test",
                    "ports": [
                        "py39-pytest"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py37-pytorch-lightning",
            "portdir": "python/py-pytorch-lightning",
            "version": "1.6.5",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/PyTorchLightning/pytorch-lightning",
            "description": "The lightweight PyTorch wrapper for high-performance AI research.",
            "long_description": "Lightning disentangles PyTorch code to decouple the science from the engineering.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py37-setuptools",
                        "clang-14"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python37"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py37-numpy",
                        "py37-pytorch",
                        "py37-tensorboard",
                        "py37-tqdm",
                        "py37-yaml",
                        "py37-future",
                        "py37-fsspec"
                    ]
                }
            ],
            "depends_on": []
        },
        {
            "name": "py39-pytorch-lightning",
            "portdir": "python/py-pytorch-lightning",
            "version": "1.6.5",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/PyTorchLightning/pytorch-lightning",
            "description": "The lightweight PyTorch wrapper for high-performance AI research.",
            "long_description": "Lightning disentangles PyTorch code to decouple the science from the engineering.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py39-setuptools",
                        "clang-17",
                        "py39-installer",
                        "py39-build",
                        "py39-wheel"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python39"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py39-tqdm",
                        "py39-yaml",
                        "py39-tensorboard",
                        "py39-pytorch",
                        "py39-numpy",
                        "py39-future",
                        "py39-fsspec"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "run",
                    "ports": [
                        "py39-kraken",
                        "py39-transformers"
                    ]
                }
            ]
        },
        {
            "name": "py38-pytorch-lightning",
            "portdir": "python/py-pytorch-lightning",
            "version": "1.6.5",
            "license": "Apache-2",
            "platforms": "{darwin any}",
            "epoch": 0,
            "replaced_by": null,
            "homepage": "https://github.com/PyTorchLightning/pytorch-lightning",
            "description": "The lightweight PyTorch wrapper for high-performance AI research.",
            "long_description": "Lightning disentangles PyTorch code to decouple the science from the engineering.",
            "active": false,
            "categories": [
                "python"
            ],
            "maintainers": [],
            "variants": [],
            "dependencies": [
                {
                    "type": "build",
                    "ports": [
                        "py38-setuptools",
                        "clang-15"
                    ]
                },
                {
                    "type": "lib",
                    "ports": [
                        "python38"
                    ]
                },
                {
                    "type": "run",
                    "ports": [
                        "py38-numpy",
                        "py38-pytorch",
                        "py38-tensorboard",
                        "py38-tqdm",
                        "py38-yaml",
                        "py38-future",
                        "py38-fsspec"
                    ]
                }
            ],
            "depends_on": [
                {
                    "type": "run",
                    "ports": [
                        "py38-kraken",
                        "py38-transformers"
                    ]
                }
            ]
        }
    ]
}